设f(x)可导,f(x)=f(x)(1+sinx)充要条件
设f(x)可导,F(x)=f(x)(1+|sinx|)则f(0)=0是F(x)在x=0处可导的充分必要条件...
设f(x)可导,F(x)=f(x)(1+|sinx|)则f(0)=0是F(x)在x=0处可导的充分必要条件
展开
2个回答
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步...
点击进入详情页
本回答由上海华然企业咨询提供
展开全部
①充分性: f(0)=0 ,则:
F'(0)
=lim(x->0) [f(x)(1+|sinx|)-f(0)(1+|sin0|]/x
=lim(x->0) f(x)(1+|sinx|)/x
=lim(x->0) [f(x)-f(0)]/x* (1+|sinx|)
= f'(0)*1
= f'(0)
②必要性:F(x)在x=0处可导,则:
F'(0+0)=F'(0-0)
由导数极限定理【此处也可改为极限式计算】:
F'(0+0)
=lim(x->0+) [f(x)(1+sinx)]'
=lim(x->0+) [f'(x)(1+sinx)+f(x)*cosx]
=f'(0)+f(0)
F'(0-0)
=lim(x->0+) [f(x)(1-sinx)]'
=lim(x->0+) [f'(x)(1-sinx)-f(x)*cosx]
=f'(0)-f(0)
∵F'(0+0)=F'(0-0)
∴f'(0)+f(0)=f'(0)-f(0)
∴ f(0)=0
F'(0)
=lim(x->0) [f(x)(1+|sinx|)-f(0)(1+|sin0|]/x
=lim(x->0) f(x)(1+|sinx|)/x
=lim(x->0) [f(x)-f(0)]/x* (1+|sinx|)
= f'(0)*1
= f'(0)
②必要性:F(x)在x=0处可导,则:
F'(0+0)=F'(0-0)
由导数极限定理【此处也可改为极限式计算】:
F'(0+0)
=lim(x->0+) [f(x)(1+sinx)]'
=lim(x->0+) [f'(x)(1+sinx)+f(x)*cosx]
=f'(0)+f(0)
F'(0-0)
=lim(x->0+) [f(x)(1-sinx)]'
=lim(x->0+) [f'(x)(1-sinx)-f(x)*cosx]
=f'(0)-f(0)
∵F'(0+0)=F'(0-0)
∴f'(0)+f(0)=f'(0)-f(0)
∴ f(0)=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询