求数列的前n项和的不同方法有哪几种?

回答时每种方法可不可以顺带一两个例子... 回答时每种方法可不可以顺带一两个例子 展开
 我来答
汝蝶宗高昂
2020-02-12 · TA获得超过3759个赞
知道大有可为答主
回答量:3074
采纳率:25%
帮助的人:174万
展开全部
常见方法有:
1.公式法:就是利用等差数列,等比数列的求和公式进行求和。比较简单哈,不举例子了。
2.分组求和:就是当所给数列有两个或多个比较容易求和的数列组成,可以用分组求和简化运算。例:an=2^n+n
则Sn=2^1+1+……2^n+n
可以将其看为一个等比数列bn=2^n
和一个等差数列cn=n分别对两个部分进行求和。
3.错位相减:适应于一个等差数列和一个等比数列相乘所得的数列。方法是两侧乘以等比数列的公比。例:an=n*2^n

Sn=1*2^1+2*2^2+3*2^3+……n*2^n
2Sn=1*2^2+2*2^3+……(n-1)*2^n+n*2^(n+1)
所以Sn=2Sn-Sn=
楼主自己算吧(懒得慌哈)
另外注意
我写的对应关系
错位相减法最容易算错了
高考中考的频率
也比较高
4.裂项相消:有些数列比较特殊,通过裂项的方法可以起到求和的目的。例an=1/[n*(n+1)]
而an=1/[n*(n+1)]=1/n-1/(n+1)
所以Sn=1-1/2+1/2-1/3+1/3-1/4+……
1/n-1/(n+1)
=1-1/(n+1)
=n/(n+1)
希望对你有帮助吧
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式