已知函数f(x)=2+log以3为底x的对数,x∈[1,3] 1)求函数y=f²(x)+f(x²)的定义域。
展开全部
(1)设A=log以3为底x的对数.
则F(X)=2+A F²(X)+F(X²)=(2+A)²+2+2A=A²+6A+6
其定义域X∈[1,3]
(2)F²(X)+F(X²)=(2+A)²+2+2A=A²+6A+6=(A+3)²-3
X∈[1,3]
所以当X=1时候,A有最小值=0,F²(X)+F(X²)最小值=6
当X=3时候,A有最大值=1,F²(X)+F(X²)最大值=13
所以函数值域[6,13]
则F(X)=2+A F²(X)+F(X²)=(2+A)²+2+2A=A²+6A+6
其定义域X∈[1,3]
(2)F²(X)+F(X²)=(2+A)²+2+2A=A²+6A+6=(A+3)²-3
X∈[1,3]
所以当X=1时候,A有最小值=0,F²(X)+F(X²)最小值=6
当X=3时候,A有最大值=1,F²(X)+F(X²)最大值=13
所以函数值域[6,13]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询