矩阵不可逆行列式一定为0吗

 我来答
华源网络
2022-06-15 · TA获得超过5612个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:150万
展开全部

矩阵不可逆行列式一定为0,矩阵不可逆,一定有一个特征值是0。因为若矩阵不可逆,可矩阵的行列式为为0,又因为矩阵的行列式等于所有特征值的乘积,故必有一个特征值为0。

矩阵不可逆行列式过程

设A为n阶矩阵,若存在常数λ及n维非零向量x,使得Ax=λx,则称λ是矩阵A的特征值,x是A属于特征值λ的特征向量。

设A为n阶矩阵,根据关系式Ax=λx,可写出(λE-A)x=0,继而写出特征多项式|λE-A|=0,可求出矩阵A有n个特征值(包括重特征值)。将求出的特征值λi代入原特征多项式,求解方程(λiE-A)x=0,所求解向量x就是对应的特征值λi的特征向量。

矩阵不可逆的条件

1.|A| = 0

2.A的列(行)向量组线性相关

3.R(A)<n

4.AX=0 有非零解

5.A有特征值0

6.A不能表示成初等矩阵的乘积

7.A的等价标准形不是单位矩阵

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式