求∫e^(-x^2)dx=多少?
2个回答
展开全部
解题过程如下:
原式=∫e^(-x^2)dx
=∫∫e^(-x^2-y^2) dxdy
=∫∫e^(-r^2) rdrdα
=(∫e^(-r^2) rdr)*(∫dα)
=π*∫e^(-r^2) dr^2
=π*(1-e^(-r^2) |r->+∝
=π
∵ ∫∫e^(-x^2-y^2) dxdy
=(∫e^(-x^2)dx)*(∫e^(-y^2)dy)
=(∫e^(-x^2)dx)^2
∴∫e^(-x^2)dx=√π
函数的积分表示了函数在某个区域上的整体性质,改变函数某点的取值不会改变它的积分值。对于黎曼可积的函数,改变有限个点的取值,其积分不变。
对于勒贝格可积的函数,某个测度为0的集合上的函数值改变,不会影响它的积分值。如果两个函数几乎处处相同,那么它们的积分相同。如果任意元素A,可积函数f在A上的积分总等于(大于等于)可积函数g在A上的积分。
华瑞RAE一级代理商
2024-04-11 广告
2024-04-11 广告
Minimax 电商平台4是我们广州江腾智能科技有限公司推出的一款高端智能机器人。它集合了先进的人工智能技术,具备强大的学习和适应能力,可以根据不同环境进行自我优化。Minimax 电商平台4在多个领域都有广泛应用,如智能家居、医疗辅助、工...
点击进入详情页
本回答由华瑞RAE一级代理商提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询