一道高一数学问题,求详细解答
已知集合A={x|x^2-4mx+2m+6=0}集合B={x|x<0}若A∩B=空集,求m取值范围...
已知集合A={x|x^2-4mx+2m+6=0}集合B={x|x<0}若A∩B=空集,求m取值范围
展开
4个回答
展开全部
令f(x)=x^2-4mx+2m+6=0,原题等价于f(x)由且仅有非负根,分为以下情形:
(1)根x=0时,m=-3
(2)根x〉0时,则必须满足以下三个条件:
(i)f(0)>0,得m>-3
(ii)对称轴x=2m>0,得m>0
(iii)f(2m)<=0,得-1>=m或者m>=3/2
上述(i)、(ii)、(iii)中m的交集为m>=3/2
因此m取值范围为m>=3/2或者m=-3
(1)根x=0时,m=-3
(2)根x〉0时,则必须满足以下三个条件:
(i)f(0)>0,得m>-3
(ii)对称轴x=2m>0,得m>0
(iii)f(2m)<=0,得-1>=m或者m>=3/2
上述(i)、(ii)、(iii)中m的交集为m>=3/2
因此m取值范围为m>=3/2或者m=-3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
A交B不等于空集则A有负根
有解
判别式大于等于0
16m²-8m-24>=0
(m+1)(2m-3)>=0
m<=-1,m>=3/2
假设x1<0
x1+x2=4m
x1x2=2m+6
若x2<0
则x1+x2<0,x1x2>0
4m<0,2m+6>0
-3<m<0
若x2=0
x1+x2<0,x1x2=0
4m<0,2m+6=0
m=-3
若x2>0
则x1x2<0
2m+6<0
m<-3
所以m<0
再结合判别式
m<=-1
有解
判别式大于等于0
16m²-8m-24>=0
(m+1)(2m-3)>=0
m<=-1,m>=3/2
假设x1<0
x1+x2=4m
x1x2=2m+6
若x2<0
则x1+x2<0,x1x2>0
4m<0,2m+6>0
-3<m<0
若x2=0
x1+x2<0,x1x2=0
4m<0,2m+6=0
m=-3
若x2>0
则x1x2<0
2m+6<0
m<-3
所以m<0
再结合判别式
m<=-1
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:由题设可知,方程x²-4mx+2m+6=0解的情况是,或无实数解,或其解均为非负数。(1)当无实数解时,⊿=(-4m)²-4(2m+6)<0.===>-1<m<3/2.(2) 当解均为非负数时,由伟达定理可得:⊿=(-4m)²-4(2m+6)≥0,且4m≥0,且2m+6≥0.===>m≥3/2.综上可知,m>-1.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询