展开全部
f(x)=1/(x^2-2x)定义域为:x不等于0,不等于2利用导函数的性质f(x)=1/(x^2-2x)求导得:f'(x)=-2(x-1)/(x^2-2x)^2
因为(x^2-2x)^2
大于0当x在[1,2)和(2,正无穷)上时,f'(x)=-2(x-1)/(x^2-2x)^2
小于等于0,为单调减函数.当x在(负无穷,0)和(0,1]上时,f'(x)=-2(x-1)/(x^2-2x)^2
大于等于0,为单调增函数.单调减区间:[1,2)和(2,正无穷)单调增区间:(负无穷,0)和(0,1]
方法二高一没有学导数.我给出思路f(x)=1/(x^2-2x)定义域为:{x|x≠0且x≠2}x^2-2x=(x-1)^2-1所以当x∈(-∞,0),x∈(0,1)时x^2-2x单调递减当x∈(1,2),x∈(2,+∞)时x^2-2x单调递增从而当x∈(-∞,0),x∈(0,1)时f(x)=1/(x^2-2x)单调递增当x∈(1,2),x∈(2,+∞)时f(x)=1/(x^2-2x)单调递减
因为(x^2-2x)^2
大于0当x在[1,2)和(2,正无穷)上时,f'(x)=-2(x-1)/(x^2-2x)^2
小于等于0,为单调减函数.当x在(负无穷,0)和(0,1]上时,f'(x)=-2(x-1)/(x^2-2x)^2
大于等于0,为单调增函数.单调减区间:[1,2)和(2,正无穷)单调增区间:(负无穷,0)和(0,1]
方法二高一没有学导数.我给出思路f(x)=1/(x^2-2x)定义域为:{x|x≠0且x≠2}x^2-2x=(x-1)^2-1所以当x∈(-∞,0),x∈(0,1)时x^2-2x单调递减当x∈(1,2),x∈(2,+∞)时x^2-2x单调递增从而当x∈(-∞,0),x∈(0,1)时f(x)=1/(x^2-2x)单调递增当x∈(1,2),x∈(2,+∞)时f(x)=1/(x^2-2x)单调递减
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询