卡方检验具体怎么计算

 我来答
刺任芹O
2022-11-16 · TA获得超过6.2万个赞
知道顶级答主
回答量:38.7万
采纳率:99%
帮助的人:9009万
展开全部

四格表资料检验

四格表资料的卡方检验用于进行两个率或两个构成比的比较。

1. 专用公式:

若四格表资料四个格子的频数分别为a,b,c,d,则四格表资料卡方检验的卡方值=n(ad-bc)^2/(a+b)(c+d)(a+c)(b+d),

自由度v=(行数-1)(列数-1)

列联表资料检验

同一组对象,观察每一个个体对两种分类方法的表现,结果构成双向交叉排列的统计表就是列联表。

1. R*C 列联表的卡方检验:

R*C 列联表的卡方检验用于R*C列联表的相关分析,卡方值的计算和检验过程与行×列表资料的卡方检验相同。

2. 2*2列联表的卡方检验:

2*2列联表的卡方检验又称配对记数资料或配对四格表资料的卡方检验,根据卡方值计算公式的不同,可以达到不同的目的。当用一般四格表的卡方检验计算时,卡方值=n(ad-bc)^2/[(a+b)(c+d)(a+c)(b+d)],此时用于进行配对四格表的相关分析。

如考察两种检验方法的结果有无关系;当卡方值=(|b-c|-1)2/(b+c)时,此时卡方检验用来进行四格表的差异检验,如考察两种检验方法的检出率有无差别。

列联表卡方检验应用中的注意事项同R*C表的卡方检验相同。

卡方检验就是统计样本的实际观测值与理论推断值之间的偏离程度,实际观测值与理论推断值之间的偏离程度就决定卡方值的大小,卡方值越大,越不符合,偏差越小,卡方值就越小,越趋于符合,若量值完全相等时,卡方值就为0,表明理论值完全符合。

行×列表资料检验

行×列表资料的卡方检验用于多个率或多个构成比的比较。

1. 专用公式:

r行c列表资料卡方检验的卡方值=n[(A11/n1n1+A12/n1n2+...+Arc/nrnc)-1]

2. 应用条件:

要求每个格子中的理论频数T均大于5或1<T<5的格子数不超过总格子数的1/5。当有T<1或1<T<5的格子较多时,可采用并行并列、删行删列、增大样本含量的办法使其符合行×列表资料卡方检验的应用条件。而多个率的两两比较可采用行X列表分割的办法。

列联表资料检验

同一组对象,观察每一个个体对两种分类方法的表现,结果构成双向交叉排列的统计表就是列联表。

1. R*C 列联表的卡方检验:

R*C 列联表的卡方检验用于R*C列联表的相关分析,卡方值的计算和检验过程与行×列表资料的卡方检验相同。

2. 2*2列联表的卡方检验:

2*2列联表的卡方检验又称配对记数资料或配对四格表资料的卡方检验,根据卡方值计算公式的不同,可以达到不同的目的。

当用一般四格表的卡方检验计算时,卡方值=n(ad-bc)^2/[(a+b)(c+d)(a+c)(b+d)],此时用于进行配对四格表的相关分析。

如考察两种检验方法的结果有无关系;当卡方值=(|b-c|-1)2/(b+c)时,此时卡方检验用来进行四格表的差异检验,如考察两种检验方法的检出率有无差别。

列联表卡方检验应用中的注意事项同R*C表的卡方检验相同。

卡方检验就是统计样本的实际观测值与理论推断值之间的偏离程度,实际观测值与理论推断值之间的偏离程度就决定卡方值的大小,卡方值越大,越不符合,偏差越小,卡方值就越小,越趋于符合,若量值完全相等时,卡方值就为0,表明理论值完全符合。

为什么从正态总体中抽取出的样本的方差服从χ2分布

在抽样分布理论一节里讲到,从正态总体进行一次抽样就相当于独立同分布的 n 个正态随机变量ξ1,ξ2,?,ξn的一次取值。

将 n 个随机变量针对总体均值与方差进行标准化得(i=1,?,n),显然每个都是服从标准正态分布的,因此按照χ2分布的定义,应该服从参数为 n 的χ2分布。

如果将中的总体均值 μ 用样本平均数 ξ 代替,即得,它是否也服从χ2分布呢?理论上可以证明,它是服从χ2分布的,但是参数不是 n 而是 n-1 了,究其原因在于它是 n-1 个独立同分布于标准正态分布的随机变量的平方和

扩展资料

卡方检验的统计量是卡方值,它是每个格子实际频数A与理论频数T差值平方与理论频数之比的累计和。每个格子中的理论频数T是在假定两组的发癌率相等(均等于两组合计的发癌率)的情况下计算出来的。

如第一行第一列的理论频数为71*(91/113)=57.18,故卡方值越大,说明实际频数与理论频数的差别越明显,两组发癌率不同的可能性越大。

参考资料:卡方检验的百度百科

SPSSAU
2023-08-09 · 百度认证:SPSSAU官方账号,优质教育领域创作者
SPSSAU
SPSSAU,也称"在线SPSS",一款网页版数据科学算法平台系统,提供"拖拽点一下"的极致体验和智能化分析结果。
向TA提问
展开全部

其中A代表某个类别的观察频数,E代表基于H0计算出的期望频数,Ai为i水平的观察频数,Ei为i水平的期望频数,n为总频数,pi为i水平的期望频率。当n比较大时,χ2统计量近似服从k-1个自由度的卡方分布。

卡方检验是用于分析定类数据与定类数据之间的关系情况。例如想要研究性别和是否购买产品之间的关系。可以使用卡方检验。

路径SPSSAU【通用方法】→【交叉(卡方)】

结果如下:

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式