函数极限有哪几种常见的方法?
1个回答
展开全部
以n为变量,下面按趋于无穷大时从快到慢排序:
n的n次方,n的阶乘,a的n次方(指数函数)a>1,n的a次方(幂函数)a>0,对数函数ln(n)。
常见的几个趋于无穷大的函数可按这个顺序,如果做题时遇上了,可直接比较大小得出结果。
比如x趋于正无穷x/e^x,可直接得结果为0,x趋于0+,xlnx可直接得结果为0,等等。
一般的,对于分式来说,常利用k /n ^a在n 趋于无穷时的极限为0 (指数a 和分子k 为常数),当然上式分子分母调换则极限为无穷。若为0/0和无穷比无穷型,常利用洛必达法则简化求其极限,一般求解其极限的思路是先转为趋于0的极限来求。
单调有界准则:
单调增加(减少)有上(下)界的数列必定收敛。在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值;二是应用夹挤定理的关键是找到极限值相同的函数,并且要满足极限是趋于同一方向 ,从而证明或求得函数的极限值。
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询