关于极限的问题

正在做的一道题中遇到的问题:现在我已经求出了f(u)=a*e^u+b*e^(-u)题设中有一条件“lim[ln(2+f(u))/u]=1这里u趋向于0(以下极限中的u若无... 正在做的一道题中遇到的问题:
现在我已经求出了f(u)=a*e^u+b*e^(-u)
题设中有一条件“lim[ ln( 2+f(u) ) / u ]=1 这里u趋向于0(以下极限中的u若无说明均趋向于0)
这时由此条件可知lim[ ln( 2+f(u) )] =0 求的f(0)=-1
然后答案就出现如下推导,我甚为不解:
f '(0)=lim[ ( f(u)-f(0) ) / u ]
=lim[ ( f(u)+1) /u]
=lim[ ln( 2+f(u) ) / u ]
求解释
展开
参与101
2010-09-18 · TA获得超过226个赞
知道答主
回答量:54
采纳率:100%
帮助的人:32.4万
展开全部
f '(0)=lim[ ( f(u)-f(0) ) / u ]....根据微分的定义
=lim[ ( f(u)+1) /u].......根据f(0)=-1
=lim[ ln( 2+f(u) ) / u ].....当u→0时,f(u)→-1,所以1+f(u)→0
令x=1+f(u)。当x→0时,ln(1+x)=x,或x=ln(1+x)。所以:
lim[ ( f(u)+1) /u]=lim[x/u]=lim[ln(1+x)/u]=lim[ln(1+1+f(u))/u]
=lim[ln(2+f(u))/u]
但愿上面注释对你有帮助。
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式