设可导函数f(x)满足:f'(x)+xf^2(x)=x^2,且f(0)=0则?
Ax=0为f(x)的极大值点Bx=0为f(x)的极小值点C(0,0)为f(x)的拐点Dx=0不是f(x)的极值点,(0,0)也不是f(x)的拐点...
A x=0为f(x)的极大值点B x=0为f(x)的极小值点C (0,0)为f(x)的拐点D x=0不是f(x)的极值点,(0,0)也不是f(x)的拐点
展开
1个回答
展开全部
ans: C
f(0) =0
f'(x) +x[f(x)]^2 =x^2
x=0, =>f'(0) =0 (1)
f'(x) +x[f(x)]^2 =x^2
两边求导
f''(x) + [f(x)]^2 + 2xf(x).f'(x) = 2x
x=0
f''(0) + [f(0)]^2 + 0 = 0
=> f''(0) =0 (2)
f''(x) + [f(x)]^2 + 2xf(x).f'(x) = 2x
两边求导
f'''(x) + 2f(x).f'(x) + 2{f(x).f'(x) + x[f'(x)]^2 + xf(x)f''(x) } = 2
x=0
f'''(0) + 2f(0).f'(0) + 2{f(0).f'(0) + 0 + 0 } = 2
f'''(0) =2 ≠0 (3)
from (1) and (2) and (3)
x=0 是拐点
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询