已知向量a=(根号3,1),向量b=(cosx/3,-sinx/3),记f(x)=2向量a·向量bsinx/3
(1)若x属于[0,π],求函数f(x)的值域(2)在△ABC中,若f(C)=1,且b^2=ac,求sinA的值...
(1)若x属于[0,π],求函数f(x)的值域
(2)在△ABC中,若f(C)=1,且b^2=ac,求sinA的值 展开
(2)在△ABC中,若f(C)=1,且b^2=ac,求sinA的值 展开
展开全部
f(x)=2[√3cos(x/3)-sin(x/3)]·sin(x/3)
=2√3sin(x/3)cos(x/3)-2sin²(x/3)
=√3sin(2x/3)-[1-cos(2x/3)]
=√3sin(2x/3)+cos(2x/3)-1
=2sin(2x/3+π/6)-1
(1)∵x∈[0,π]
∴2x/3∈[0,2π/3]
∴(2x/3+π/6) ∈[π/6,5π/6]
∴sin(2x/3+π/6)∈[1/2,1]
∴f(x)∈[0,1]即f(x)的值域为[0,1].
(2)f(C)=2sin(2C/3+π/6)-1=1
∴sin(2C/3+π/6)=1
∴2C/3+π/6=π/2
∴C=π/2
∴c²=a²+b²
又∵b²=ac
∴c²=a²+ac 即a²+ac-c²=0
∴a=(-1±√5)c/2
∴a=(√5-1)c/2 即a/c=(√5-1)/2
∴sinA=sinA/sinC=a/c=(√5-1)/2
=2√3sin(x/3)cos(x/3)-2sin²(x/3)
=√3sin(2x/3)-[1-cos(2x/3)]
=√3sin(2x/3)+cos(2x/3)-1
=2sin(2x/3+π/6)-1
(1)∵x∈[0,π]
∴2x/3∈[0,2π/3]
∴(2x/3+π/6) ∈[π/6,5π/6]
∴sin(2x/3+π/6)∈[1/2,1]
∴f(x)∈[0,1]即f(x)的值域为[0,1].
(2)f(C)=2sin(2C/3+π/6)-1=1
∴sin(2C/3+π/6)=1
∴2C/3+π/6=π/2
∴C=π/2
∴c²=a²+b²
又∵b²=ac
∴c²=a²+ac 即a²+ac-c²=0
∴a=(-1±√5)c/2
∴a=(√5-1)c/2 即a/c=(√5-1)/2
∴sinA=sinA/sinC=a/c=(√5-1)/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询