高中数学的必要不充分条件问题
命题:p:-2<m<0,0<n<1.命题q:关于x的方程x²+mx+n=0有两个小于1的正根,试分析p是q的什么条件这道题应该怎样以标准格式做...
命题:p:-2<m<0,0<n<1.命题q:关于x的方程x²+mx+n=0有两个小于1的正根,试分析p是q的什么条件
这道题应该怎样以标准格式做 展开
这道题应该怎样以标准格式做 展开
1个回答
展开全部
P是q的必要不充分条件
设抛物线y=x2+mx+n,则为使得方程x2+mx+n=0有两个小于1的正根,抛物线必须有一下三个条件同时成立:
① m*m>4n,
② 当x=0或,x=1时y>0,(也即是:n>0,1+ m + n >0)
③ 0< -0.5m< 1,
综合上面三个条件,可以得出-2<m<0,0<n<1。
所以q可以推导出p,也即是p是q的必要条件。但是,p却不能够推导出q,举个例子,假设m=-1,n=1(显然这两个数是符合命题p的要求的),但是这两个数却不能使得方程x2+mx+n=0有实根。所以p不是q的充分条件。
设抛物线y=x2+mx+n,则为使得方程x2+mx+n=0有两个小于1的正根,抛物线必须有一下三个条件同时成立:
① m*m>4n,
② 当x=0或,x=1时y>0,(也即是:n>0,1+ m + n >0)
③ 0< -0.5m< 1,
综合上面三个条件,可以得出-2<m<0,0<n<1。
所以q可以推导出p,也即是p是q的必要条件。但是,p却不能够推导出q,举个例子,假设m=-1,n=1(显然这两个数是符合命题p的要求的),但是这两个数却不能使得方程x2+mx+n=0有实根。所以p不是q的充分条件。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询