已知函数f(x)=x^2+ax+2,x∈[-5,5], (1) 当a=-1时,求函数f(x)的单调区间 (2) 若函数f(x)在[-5,5]

已知函数f(x)=x^2+ax+2,x∈[-5,5],(1)当a=-1时,求函数f(x)的单调区间(2)若函数f(x)在[-5,5],(1)当a=-1时,求函数f(x)的... 已知函数f(x)=x^2+ax+2,x∈[-5,5], (1) 当a=-1时,求函数f(x)的单调区间 (2) 若函数f(x)在[-5,5],
(1)当a=-1时,求函数f(x)的单调区间。
(2)若函数f(x)在[-5,5]上为增函数,求a的取值范围。
展开
韩增民松
推荐于2016-12-02 · TA获得超过2.3万个赞
知道大有可为答主
回答量:5584
采纳率:40%
帮助的人:2727万
展开全部
(1)解析:∵f(x)=x^2+ax+2,x∈[-5,5]
当a=-1时,f(x)=x^2-x+2= (x-1/2)^2+7/4
∴当x∈[-5,1/2)时,函数f(x)单调减,x∈[1/2,5]时,函数f(x)单调增。
(2)∵函数f(x)在[-5,5]上为增函数
f(x)=x^2+ax+2= (x+a/2)^2+(8-a^2)/4
函数对称轴为x=-a/2
-a/2<=-5==>a>=10
∴a的取值范围为[10,+∞)
zhuanxinkaoyan
2010-09-18 · TA获得超过442个赞
知道小有建树答主
回答量:465
采纳率:0%
帮助的人:285万
展开全部
(1).当a=-1时,f(x)=x^2-x+2,f'(x)=2x-1
所以单调递增区间是[1/2,5],单调递减区间是[-5,1/2)
(2).f'(x)=2x+a≥0,x∈[-5,5]
函数f(x)在[-5,5]上为增函数,所以有:a-10≥0
即有:a≥10
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
370116
高赞答主

2010-09-18 · 你的赞同是对我最大的认可哦
知道顶级答主
回答量:9.6万
采纳率:76%
帮助的人:6.3亿
展开全部
(1)当a=-1时,求函数f(x)的单调区间。
f(x)=x^2-x+2=(x-1/2)^2+7/4.
对称轴是x=1/2.而x∈[-5,5],
所以,在区间[-5,1/2]上是单调递减,在区间[1/2,5]上是单调递增.

(2)若函数f(x)在[-5,5]上为增函数,求a的取值范围。
f(x)=x^2+ax+2=(x+a/2)^2-a^2/4+2
开口向上,对称轴是x=-a/2.
在[-5,5]上是增函数,则说明对称轴不在此区间内.
即:-a/2<=-5或-a/2>=5
解得:a>=10或a<=-10
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式