已知数列[an}满足a1=1,a(n+1)=2an+1,(1),求证;{an+1}是等比数列。(2)求an的通项公式。

zqs626290
2010-09-21 · TA获得超过3.1万个赞
知道大有可为答主
回答量:1.6万
采纳率:66%
帮助的人:5808万
展开全部
由a1=1,a(n+1)=2an+1,可得,a1=1,a2=3,a3=7,a4=15.又a(n+1)+1=2[an+1].===>[a(n+1)+1]/(an+1)=2.∴{an+1}是首项为2,公比为2的等比数列。∴an+1=2^n.∴通项为an=2^n-1.(n=1,2,3,,,).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式