
求解微分方程:y'-y=-sinx
展开全部
先求齐次线性微分方程:
dy/dx=y
lny=c+x
y=e^(x+c)
常数变异
y=c(x)e^x
dy/dx=dc(x)/dx*e^x+c(x)*e^x
带入原方程得
dc(x)/dx=-sin(x)*e^(-x)
两边同时积分得
c(x)=-1/2(sin(x)+cos(x))*e^(-x)+c
带入
y=-1/2(sin(x)+cos(x))+c*e^x
dy/dx=y
lny=c+x
y=e^(x+c)
常数变异
y=c(x)e^x
dy/dx=dc(x)/dx*e^x+c(x)*e^x
带入原方程得
dc(x)/dx=-sin(x)*e^(-x)
两边同时积分得
c(x)=-1/2(sin(x)+cos(x))*e^(-x)+c
带入
y=-1/2(sin(x)+cos(x))+c*e^x
已赞过
已踩过<
评论
收起
你对这个回答的评价是?

2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询