求解微分方程:y'-y=-sinx

 我来答
新科技17
2022-06-15 · TA获得超过5894个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:74.4万
展开全部
先求齐次线性微分方程:
dy/dx=y
lny=c+x
y=e^(x+c)
常数变异
y=c(x)e^x
dy/dx=dc(x)/dx*e^x+c(x)*e^x
带入原方程得
dc(x)/dx=-sin(x)*e^(-x)
两边同时积分得
c(x)=-1/2(sin(x)+cos(x))*e^(-x)+c
带入
y=-1/2(sin(x)+cos(x))+c*e^x
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
系科仪器
2024-08-02 广告
科仪器致力于为微纳薄膜领域提供精益级测量及控制仪器,包括各种光谱椭偏、激光椭偏、反射式光谱等,从性能参数、使用体验、价格、产品可靠性及工艺拓展性等多个维度综合考量,助客户提高研发和生产效率,以及带给客户更好的使用体验。... 点击进入详情页
本回答由系科仪器提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式