数学问题,请问这是怎么化出来的?

2q^6-q^3-1=0→(q^3-1)(2q^3+1)=09n^2-9n+2→(3n-1)(3n+2)究竟通过什么思路,怎样变形的?谢谢... 2q^6-q^3-1=0 →(q^3-1)(2q^3+1)=0

9n^2-9n+2→(3n-1)(3n+2)
究竟通过什么思路,怎样变形的?谢谢
展开
静之岚
2010-09-23 · TA获得超过116个赞
知道答主
回答量:41
采纳率:0%
帮助的人:0
展开全部
十字相乘法
1. q^3-1 2q^3+1

2. 3n-1 3n-2

举个例子 比如说
n^2+n-2 → (n-1)(n+2)
就是找2个数相加等于1(n前面为1) 相乘为2 (+n-2)

十字相乘法概念
十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。 十字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项系数a分解成两 十字相乘法
[1]个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。 基本式子:x^2;+(p+q)x+pq=(x+p)(x+q)所谓十字相乘法,就是运用乘法公式(x+a)(x+b)=x^2+(a+b)x+ab的逆运算来进行因式分解.比如说:把x^2+7x+12进行因式分解. 上式的常数12可以分解为3*4,而3+4又恰好等于一次项的系数7,所以 上式可以分解为:x^2+7x+12=(x+3)(x+4) 又如:分解因式:a^2+2a-15,上式的常数-15可以分解为5*(-3).而5+(-3)又恰好等于一次项系数2,所以a^2+2a-15=(a+5)(a-3). 讲解: x^2-3x+2=如下: x -1 ╳ x -2 左边x乘x=x^2 右边-1乘-2=2 中间-1乘x+-2乘x(对角)=-3x 上边的【x+(-1)】*下边的【x+(-2)】 就等于(x-1)*(x-2) x^2-3x+2=(x-1)*(x-2)
编辑本段例题
例1
把2x^2-7x+3分解因式. 分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分 别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数. 分解二次项系数(只取正因数): 2=1×2=2×1; 分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(-3). 用画十字交叉线方法表示下列四种情况: 1 1 ╳ 2 3 1×3+2×1 =5 1 3 ╳ 2 1 1×1+2×3 =7 1 -1 ╳ 2 -3 1×(-3)+2×(-1) =-5 1 -3 ╳ 2 -1 1×(-1)+2×(-3) =-7 经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7. 解 2x^2-7x+3=(x-3)(2x-1). 一般地,对于二次三项式ax^2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下: a1 c1 ? ╳ a2 c2 a1c2+a2c1 按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即 ax2+bx+c=(a1x+c1)(a2x+c2). 像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.
例2
把6x^2-7x-5分解因式. 分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种 2 1 ╳ 3 -5 2×(-5)+3×1=-7 是正确的,因此原多项式可以用十字相乘法分解因式. 解 6x^2-7x-5=(2x+1)(3x-5) 指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式. 对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数.例如把x^2+2x-15分解因式,十字相乘法是 1 -3 ╳ 1 5 1×5+1×(-3)=2 所以x^2+2x-15=(x-3)(x+5).
例3
把5x^2+6xy-8y^2分解因式. 分析:这个多项式可以看作是关于x的二次三项式,把-8y^2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即 1 2 ?╳ 5 -4 1×(-4)+5×2=6 解 5x^2+6xy-8y^2=(x+2y)(5x-4y). 指出:原式分解为两个关于x,y的一次式.
例4
把(x-y)(2x-2y-3)-2分解因式. 分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解. 问:两上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便? 答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了. 解 (x-y)(2x-2y-3)-2 =(x-y)[2(x-y)-3]-2 =2(x-y) ^2-3(x-y)-2 1 -2 ╳ 2 1 1×1+2×(-2)=-3 =[(x-y)-2][2(x-y)+1] =(x-y-2)(2x-2y+1). 指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法.

参考资料: http://baike.baidu.com/view/198055.html?wtp=tt

image10
2010-09-23 · TA获得超过2667个赞
知道小有建树答主
回答量:1182
采纳率:12%
帮助的人:459万
展开全部
根源就是公式(ax+b)(cx+d)=acx^2+(ad+bc)x+bd的应用。
一般是反向应用,对于9n^2-9n+2
ac=9
ad+bc=-9
bd=2

具体办法就是凑。
先看二次项系数9 可分为 9*1 与 3*3

先试a=3,c=3
3(b+d)=-9
bd=2
解之: b=-1
d=-2
所以: 9n^2-9n+2→(3n-1)(3n-2) (你的打错了)

总之是试出来的。有些常数项不一定刚好。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
对喔哈哈
2010-09-23
知道答主
回答量:41
采纳率:0%
帮助的人:24.2万
展开全部
一、2q^6-q^3-1=q^6-q^3+q^6-1=q^3(q^3-1)+(q^6-1)=q^3(q^3-1)+(q^3+1)(q^3-1)=(q^3-1)+(q^3-1)(q^3+q^3+1)=(q^3-1)(2q^3+1)
二、9n^2-9n+2=9n^2-6n+1-(3n-1)=(3n-1)^2-(3n-1)=(3n-1)(3n-2)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式