余弦定理的推导过程

 我来答
香菜冰美式呀
2022-10-10 · TA获得超过102个赞
知道小有建树答主
回答量:954
采纳率:100%
帮助的人:16.2万
展开全部

推导过程:

设 △ABC\triangle ABC 中, 。AB→=c,BC→=a,AC→=b。\vec{AB}=c,\vec{BC}=a, \vec{AC}=b。 过 BB 点作 ACAC 的垂线,垂足为 DD ,如果 DD 在 ACAC 内部,则 BDBD 的长度为 asin⁡Ca\sin C , DCDC 的长度为 acos⁡Ca\cos C , ADAD 的长度为 b−acos⁡Cb-a \cos C 。

根据勾股定理:

c2=(asin⁡C)2+(b−acos⁡C)2c^2=(a\sin C)^2+(b-a\cos C)^2

c2=a2sin2⁡C+b2−2abcos⁡C+a2cos2⁡Cc^2=a^2\sin ^2C+b^2-2ab\cos C+a^2\cos^2 C

c2=a2(sin2⁡C+cos2⁡C)+b2−2abcos⁡Cc^2=a^2(\sin ^2C+\cos^2C)+b^2-2ab\cos C

c2=a2+b2−2abcos⁡Cc^2=a^2+b^2-2ab\cos C

如果 DD 在 ACAC 的延长线上,证明是类似的。同理可以得到其他的等式。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式