用数学归纳法证明 1/2+2/2^2+3/2^3+.+n/2^n=2 - n+2/2^n.
展开全部
1/2+2/2^2+3/2^3+.+n/2^n=2 - (n+2)/2^n.
1、当n=1时候,
左边=1/2;
右边=2-3/2=1/2
左边=右边,成立.
2、设n=k时候,有:
1/2+2/2^2+3/2^3+.+k/2^k=2 - (k+2)/2^k成立,
则当n=k+1时候:有:
1/2+2/2^2+3/2^3+.+k/2^k+(k+1)/2^(k+1)
=2 - (k+2)/2^k+(k+1)/2^(k+1)
=2-[2(k+2)-(k+1)]/2^(k+1)
=2-(k+3)/2^(k+1)
=2-[(k+1)+2]/2^(k+1)
得证.
1、当n=1时候,
左边=1/2;
右边=2-3/2=1/2
左边=右边,成立.
2、设n=k时候,有:
1/2+2/2^2+3/2^3+.+k/2^k=2 - (k+2)/2^k成立,
则当n=k+1时候:有:
1/2+2/2^2+3/2^3+.+k/2^k+(k+1)/2^(k+1)
=2 - (k+2)/2^k+(k+1)/2^(k+1)
=2-[2(k+2)-(k+1)]/2^(k+1)
=2-(k+3)/2^(k+1)
=2-[(k+1)+2]/2^(k+1)
得证.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询