如图,在三角形ABC中,角ACB=90度,角ABC=30度,将三角形ABC绕点C按顺时针方向旋转角度a(略)见下

如图,在三角形ABC中,角ACB=90度,角ABC=30度,将三角形ABC绕点C按顺时针方向旋转角度a得三角形A1B1C交AB于E,三角形BB1E为等腰三角形,求角a的大... 如图,在三角形ABC中,角ACB=90度,角ABC=30度,将三角形ABC绕点C按顺时针方向旋转角度a得三角形 A1B1C 交AB于E,三角形BB1E为等腰三角

形,求角a的大小,(证明)
展开
WangShuiqing
2014-05-17 · TA获得超过1.4万个赞
知道大有可为答主
回答量:1973
采纳率:100%
帮助的人:707万
展开全部

如图,欲△BB1E是等腰三角形时,只须满足∠1=∠2,

而∠2=30°+α,

因此∠1=30°+α,

由旋转可知CB=CB1,

所以∠CBB1=∠1=30º+α,

在△CBB1中,2(30°+α)+α=180°,

解之得:α=40°。

百度网友f8158d4
2014-05-17 · TA获得超过4581个赞
知道大有可为答主
回答量:1744
采纳率:100%
帮助的人:1139万
展开全部
判断△B1BE哪两条边是腰:
1)∵△ABC按顺时针旋转得到△A1B1C1,∴B1C=BC,∴∠CB1B=∠CBB1=30°+∠EBB1
∴∠EB1B≠∠EBB1,∴EB≠EB1
2)如果BB1=BE,则∠BB1E=∠BEB1=α+30°,根据三角形内角和定理,∠B1BE=120°-2α
而根据1),∠EBB1=∠EB1B-30°,∴120°-2α=α+30°-30°,解得α=40°
3)若B1B=BE,则∠B1EB=∠B1BE=α+30°=(180°-∠CB1B)/2 = (180°-∠CBB1)/2
=(150°-∠B1BE)/2 = (120°-α)/2,解得α=20°
追问
哪个点是E
追答
AB和B1C的交点
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
樗栎
2014-05-17 · 超过10用户采纳过TA的回答
知道答主
回答量:94
采纳率:0%
帮助的人:35.8万
展开全部
因为三角形BB1E为等腰三角形,所以角B1BA等于角BB1C等于60度,所以角B1BC等于90度,所以角a等于30度
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式