圆锥曲线的所有定义,性质!

越详细越好!... 越详细越好! 展开
匿名用户
2013-12-06
展开全部
 一、圆锥曲线的定义
  1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P| |PF<sub>1</sub>|+|PF<sub>2</sub>|=2a, (2a>|F<sub>1</sub>F<sub>2</sub>|)}。
  2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF<sub>1</sub>|-|PF<sub>2</sub>||=2a, (2a<|F<sub>1</sub>F<sub>2</sub>|)}。
  3. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0时为椭圆:当e=1时为抛物线;当e>1时为双曲线。
  二、圆锥曲线的方程。
  1.椭圆: + =1(a>b>0)或 + =1(a>b>0)(其中,a2=b2+c2)
  2.双曲线: - =1(a>0, b>0)或 - =1(a>0, b>0)(其中,c2=a2+b2)
  3.抛物线:y2=±2px(p>0),x2=±2py(p>0)
  三、圆锥曲线的性质
  1.椭圆: + =1(a>b>0)
  (1)范围:|x|≤a,|y|≤b
  (2)顶点:(±a,0),(0,±b)
  (3)焦点:(±c,0)
  (4)离心率:e= ∈(0,1)
  (5)准线:x=±
  2.双曲线: - =1(a>0, b>0)
  (1)范围:|x|≥a, y∈R
  (2)顶点:(±a,0)
  (3)焦点:(±c,0)
  (4)离心率:e= ∈(1,+∞)
  (5)准线:x=±
  (6)渐近线:y=± x
  3.抛物线:y2=2px(p>0)
  (1)范围:x≥0, y∈R
  (2)顶点:(0,0)
  (3)焦点:( ,0)
  (4)离心率:e=1
  (5)准线:x=-   四、例题选讲:  例1.椭圆短轴长为2,长轴是短轴的2倍,则椭圆中心到准线的距离是__________。
  解:由题:2b=2,b=1,a=2,c= = ,则椭圆中心到准线的距离: = = 。
  注意:椭圆本身的性质(如焦距,中心到准线的距离,焦点到准线的距离等等)不受椭圆的位置的影响。
  例2.椭圆 + =1的离心率e= ,则m=___________。
  解:(1)椭圆的焦点在x轴上,a2=m,b2=4,c2=m-4,e2= = = m=8。
  (2)椭圆的焦点在y轴上,a2=4,b2=m,c2=4-m,e2= = = m=2。
  注意:椭圆方程的标准形式有两个,在没有确定的情况下,两种情况都要考虑,切不可凭主观丢掉一解。
  例3.如图:椭圆 + =1(a>b>0),F1为左焦点,A、B是两个顶点,P为椭圆上一点,PF1⊥x轴,且PO//AB,求椭圆的离心率e。
  解:设椭圆的右焦点为F2,由第一定义:|PF1|+|PF2|=2a,
  ∵ PF1⊥x轴,∴ |PF1|2+|F1F2|2=|PF2|2,
  即(|PF2|+|PF1|)(|PF2|-|PF1|)=4c2,  ∴ |PF1|= 。  ∵ PO//AB,∴ ΔPF1O∽ΔBOA,
  ∴ = c=b a= c, ∴ e= = 。
  又解,∵ PF1⊥x轴,∴ 设P(-c, y)。
  由第二定义: =e |PF1|=e(x0+ )= (-c+ )= ,
  由上解中ΔPF1O∽ΔBOA,得到b=c e= 。
  例4.已知F1,F2为椭圆 + =1的焦点,P为椭圆上一点,且∠F1PF2= ,求ΔF1PF2的面积。
  分析:要求三角形的面积,可以直接利用三角形的面积公式,注意到椭圆中一些量之间的关系,我们选用面积公式S= absinC。
  解法 一:SΔ= |PF1|·|PF2|·sin
  |PF1|+|PF2|=2a=20,
  4×36=4c2=|F1F2|2=|PF1|2+|PF2|2-2|PF1||PF2|cos ,
 即(|PF1|+|PF2|)2-3|PF1||PF2|=4×36,
  |PF1|·|PF2|=   ∴ SΔ= × × = 。  解法二:SΔ= |F1F2|·|yP|= ×12×yP=6|yP|,  由第二定义: =e |PF1|=a+exP=10+ xP,  由第一定义:|PF2|=2a-|PF1|=10- xP,  4c2=|F1F2|2=(10+ xP)2+(10- xP)2-2(10+ xP)(10- xP)cos ,  144=100+ = , =64(1- )=64× ,  SΔ=6|yP|=6× = 。  注意:两个定义联合运用解决问题。从三角形面积公式均可得到结果。初学时最好两种
系科仪器
2024-08-02 广告
椭圆偏振仪是一种精密的光学测量仪器,广泛应用于材料科学、半导体工业及光学薄膜研究中。它能够精确测量光波通过介质后偏振态的变化,如相位差和椭偏率,从而分析材料的光学性质、厚度及折射率等关键参数。通过非接触式测量,椭圆偏振仪为科研人员提供了高效... 点击进入详情页
本回答由系科仪器提供
匿名用户
推荐于2017-12-16
展开全部
圆锥曲线统一定义:(第二定义)
平面上到定点(焦点)的距离与到定直线(准线)的距离为定值(离心率e)的点的集合。而根据e的大小分为椭圆,抛物线,双曲线。圆可看作e为0的曲线。

1。0<e<1为椭圆,直角坐标系中标准方程为:
x^2/a^2+y^2/b^2=1(0<b<a),焦点在x轴上,焦点(c,0)(-c,0)准线x=+-a^2/c,e=c/a
y^2/a^2+y^2/b^2=1(0<b<a),焦点在y轴上,焦点(0,c)(0。-c)准线y=+-a^2/c,e=c/a
a^2=b^2+c^2
椭圆上任意一点到两焦点距离之和为2a(定值),且大于焦距2c,这是第一定义
光学性质:过焦点的任意一条光线经椭圆反射必过另一焦点

2。e=1为抛物线,直角坐标系中标准方程为:
y^2=2px,对称轴为x轴,焦点(p/2,0),准线x=-p/2
x^2=2py,对称轴为y轴,焦点,(0,p/2)准线y=-p/2
光学性质:任意平行对称轴的光线经抛物线反射必过焦点(或反向延长线过焦点)

3。1<e为双曲线,直角坐标系中标准方程为:
x^2/a^2-y^2/b^2=1(0<b<a),焦点在x轴上,焦点(c,0)(-c,0)准线x=+-a^2/c,e=c/a
y^2/a^2-y^2/b^2=1(0<b<a),焦点在y轴上,焦点(0,c)(0。-c)准线y=+-a^2/c,e=c/a
c^2=b^2+a^2
双曲线上任意一点到两焦点距离之差的绝对值为2a(定值),且小于焦距2c,这是第一定义
光学性质:过焦点的任意一条光线经双曲线反射其反向延长线必过另一焦点
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式