高一数学求解谢谢!
展开全部
f(x)=loga(1-mx)/(x-1)是奇函数
f(x)+f(-x)=0
loga 1-mx/x-1+loga 1+mx/(-x-1)=0
(1-mx)*(1+mx)/(x-1)(-x-1)=1
1-m^2x^2=1-x^2
(m^2-1)x^2=0
m1=1
m2=-1
m≠1
所以:
m=-1
f(x)=loga [(x+1)/(x-1)]
2
定义域:1+x/x-1>0
x>1或x<-1
f(x)=loga [(x+1)/(x-1)]
令t=(x+1)/(x-1)=1+2/(x-1)
t在(1,+∞)上t>0,且是减函数.
则loga t在R+上
当0<a<1时,是减函数,
当a>1时,是增函数.
又由复合函数单调性
当0<a<1时,f(x)在(1,+∞)上是单调递增函数
当a>1时,f(x)在(1,+∞)上是单调递减函数
对于函数f(x) = loga(x+1)/(x-1)
若0<a<1 时
函数f(x)的值域是(1,+∞)
则
0<(x+1)/(x-1)<a
解得
-2/(1-a)<x<-1
因定义域为x∈(1,a-2)
则
-2/(1-a)=1
-2 =1-a
无解。
若a>1 时
函数f(x)的值域是(1,+∞)
则应该有
a<(x+1)/(x-1)
即
[(a-1)x-(a+1)]/(x-1)<0
解得
1<x<(a+1)/(a-1)
因定义域为x∈(1,a-2)
则有
a-2 = (a+1)/(a-1)
解得
a= 2+√3或 a= 2-√3(舍去)
所以 a= 2+√3
f(x)+f(-x)=0
loga 1-mx/x-1+loga 1+mx/(-x-1)=0
(1-mx)*(1+mx)/(x-1)(-x-1)=1
1-m^2x^2=1-x^2
(m^2-1)x^2=0
m1=1
m2=-1
m≠1
所以:
m=-1
f(x)=loga [(x+1)/(x-1)]
2
定义域:1+x/x-1>0
x>1或x<-1
f(x)=loga [(x+1)/(x-1)]
令t=(x+1)/(x-1)=1+2/(x-1)
t在(1,+∞)上t>0,且是减函数.
则loga t在R+上
当0<a<1时,是减函数,
当a>1时,是增函数.
又由复合函数单调性
当0<a<1时,f(x)在(1,+∞)上是单调递增函数
当a>1时,f(x)在(1,+∞)上是单调递减函数
对于函数f(x) = loga(x+1)/(x-1)
若0<a<1 时
函数f(x)的值域是(1,+∞)
则
0<(x+1)/(x-1)<a
解得
-2/(1-a)<x<-1
因定义域为x∈(1,a-2)
则
-2/(1-a)=1
-2 =1-a
无解。
若a>1 时
函数f(x)的值域是(1,+∞)
则应该有
a<(x+1)/(x-1)
即
[(a-1)x-(a+1)]/(x-1)<0
解得
1<x<(a+1)/(a-1)
因定义域为x∈(1,a-2)
则有
a-2 = (a+1)/(a-1)
解得
a= 2+√3或 a= 2-√3(舍去)
所以 a= 2+√3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询