等比数列{an}的首项为1,公比为q,前n项和为S,则数列{1/an}的前n项和为?
1个回答
展开全部
若q=1,则,a(n) = 1, s(n) = n = s,
1/a(n) = 1, 1/a(1)+1/a(2)+...+1/a(n) = t(n) = n = s.
若q不为1,a(n) = q^(n-1), s(n) = [q^n - 1]/(q-1) = s.
q^n = 1 + (q-1)s.
1/a(n) = (1/q)^(n-1),
t(n) = 1/a(1)+1/a(2)+...+1/a(n) = [1-(1/q)^n]/(1-1/q) = [1-1/(1+qs-s)]/(1-1/q)
= [(qs-s)/(1+qs-s)]/[(q-1)/q]
= sq/(1+qs-s)
1/a(n) = 1, 1/a(1)+1/a(2)+...+1/a(n) = t(n) = n = s.
若q不为1,a(n) = q^(n-1), s(n) = [q^n - 1]/(q-1) = s.
q^n = 1 + (q-1)s.
1/a(n) = (1/q)^(n-1),
t(n) = 1/a(1)+1/a(2)+...+1/a(n) = [1-(1/q)^n]/(1-1/q) = [1-1/(1+qs-s)]/(1-1/q)
= [(qs-s)/(1+qs-s)]/[(q-1)/q]
= sq/(1+qs-s)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询