向量组的极大无关组是怎样定义的?

 我来答
教育小百科达人
2022-12-21 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:477万
展开全部

向量组的极大无关组满足2个条件:

1、自身线性无关。

2、向量组中所有向量可由它线性表示。

例题的解法:

构造矩阵 (a1,a2,a3,a4),对它用行变换化成梯矩阵。

非零行的首非零元所在的列对应的向量就是一个极大无关组。

5 4 1 3

2 1 1 4

-3 -2 -1 -1

1 3 -2 2

化成了行简化梯矩阵:

1 0 1 0

0 1 -1 0

0 0 0 1

0 0 0 0

所以极大无关组是: a1,a2,a4

且 a3 = a1-a2+0a4

扩展资料:

极大无关组的概念可以推广到含无限个向量的情形。因此,线性空间V的任一个基可看成V的极大无关组。特别的,齐次线性方程组的基础解系是其解空间的极大无关组。

设V是域P上的线性空间,S是V的子集。若S的一部分向量线性无关,但在这部分向量中,加上S的任一向量后都线性相关,则称这部分向量是S的一个极大线性无关组。V中子集的极大线性无关组不是惟一的,例如,V的基都是V的极大线性无关组。

任意一个极大线性无关组都与向量组本身等价。一向量组的任意两个极大线性无关组都是等价的。

若一个向量组中的每个向量都能用另一个向量组中的向量线性表出,则前者极大线性无关向量组的向量个数小于或等于后者。

参考资料来源:百度百科——极大线性无关组

参考资料来源:百度百科——极大无关组

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式