(2012?湖北)如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△A

(2012?湖北)如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示)... (2012?湖北)如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示),(1)当BD的长为多少时,三棱锥A-BCD的体积最大;(2)当三棱锥A-BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小. 展开
 我来答
魅专用47i
推荐于2016-09-29 · 超过57用户采纳过TA的回答
知道答主
回答量:113
采纳率:0%
帮助的人:147万
展开全部
(1)设BD=x,则CD=3-x
∵∠ACB=45°,AD⊥BC,∴AD=CD=3-x
∵折起前AD⊥BC,∴折起后AD⊥BD,AD⊥CD,BD∩DC=D
∴AD⊥平面BCD
∴VA-BCD=
1
3
×AD×S△BCD=
1
3
×(3-x)×
1
2
×x(3-x)=
1
6
(x3-6x2+9x)
设f(x)=
1
6
(x3-6x2+9x)  x∈(0,3),
∵f′(x)=
1
2
(x-1)(x-3),∴f(x)在(0,1)上为增函数,在(1,3)上为减函数
∴当x=1时,函数f(x)取最大值
∴当BD=1时,三棱锥A-BCD的体积最大;
(2)以D为原点,建立如图直角坐标系D-xyz,
由(1)知,三棱锥A-BCD的体积最大时,BD=1,AD=CD=2
∴D(0,0,0),B(1,0,0),C(0,2,0),A(0,0,2),M(0,1,1),E(
1
2
,1,0),且
BM
=(-1,1,1)
设N(0,λ,0),则
EN
=(-
1
2
,λ-1,0)
∵EN⊥BM,∴
EN
?
BM
=0
即(-1,1,1)?(-
1
2
,λ-1,0)=
1
2
+λ-1=0,∴λ=
1
2
,∴N(0,
1
2
,0)
∴当DN=
1
2
时,EN⊥BM
设平面BMN的一个法向
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式