已知f(x)=cos2x+sinxcosx,g(x)=2sin(x+π4)sin(x?π4).(1)求f(x)的最小正周期及单调增区间;(2
已知f(x)=cos2x+sinxcosx,g(x)=2sin(x+π4)sin(x?π4).(1)求f(x)的最小正周期及单调增区间;(2)若f(α)+g(α)=56,...
已知f(x)=cos2x+sinxcosx,g(x)=2sin(x+π4)sin(x?π4).(1)求f(x)的最小正周期及单调增区间;(2)若f(α)+g(α)=56,且α∈[3π8,5π8]求sin2α的值.
展开
1个回答
展开全部
(1)y=cos2x+sinxcosx=
+
sin2x=
sin(2x+
)+
∴T=
=π,由 2kπ?
≤2x+
≤
+2kπ k∈Z,即 kπ?
≤x≤
+kπ k∈Z,
所以函数的单调增区间为:[?
π+kπ,
+kπ] (k∈Z).
(2)g(x)=2sin(x+
)sin(x?
)=-sin(2x+
)=-cos2x,
因为f(x)+g(x)=
+
sin2x-cos2x=
+
sin2x?
cos2x=
+
sin(2x-
)
f(α)+g(α)=
,
1+cos2x |
2 |
1 |
2 |
| ||
2 |
π |
4 |
1 |
2 |
∴T=
2π |
2 |
π |
2 |
π |
4 |
π |
2 |
3π |
8 |
π |
8 |
所以函数的单调增区间为:[?
3 |
8 |
π |
8 |
(2)g(x)=2sin(x+
π |
4 |
π |
4 |
π |
2 |
因为f(x)+g(x)=
1+cos2x |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
| ||
2 |
π |
4 |
f(α)+g(α)=
5 |
6 |