如图,正方形ABCD中,E为AD中点,BD与CE交于点F,求证AF垂直BE
Sievers分析仪
2025-01-06 广告
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
方法一:
证明:AD=DC,角ADF=角FDC=45度,DF=DF,
所以,三角形ADF全等于三角形CDF,
所以,角DCF=角DAF.
AE=ED,AB=DC,角BAE=角CDE=90度。
所以,三角形ABE全等于三角形DCE,
所以, 角AEB=角DEC,
所以,角DAF+角AEB=角DCF+角DEC=90度。
所以,AF垂直BE
方法二:
设BE、AF交于O
在△AFD和△BFD中,DF=DF,AD=CD(正方形),∠ADF=∠CDF(正方形对角线平分角),
∴△AFD和△BFD全等,则∠DAF=∠DCF
在△AEB和△DEC中,AE=DE(中点),AB=DC,∠EAB=∠EDC
∴△EAB和△EDC全等,则∠ABE=∠DCE=∠DCF=∠DAF.
则有∠ABF+∠BAF=∠DAF+∠BAF=90
∴∠AOB=90
∴AF垂直于BE
证明:AD=DC,角ADF=角FDC=45度,DF=DF,
所以,三角形ADF全等于三角形CDF,
所以,角DCF=角DAF.
AE=ED,AB=DC,角BAE=角CDE=90度。
所以,三角形ABE全等于三角形DCE,
所以, 角AEB=角DEC,
所以,角DAF+角AEB=角DCF+角DEC=90度。
所以,AF垂直BE
方法二:
设BE、AF交于O
在△AFD和△BFD中,DF=DF,AD=CD(正方形),∠ADF=∠CDF(正方形对角线平分角),
∴△AFD和△BFD全等,则∠DAF=∠DCF
在△AEB和△DEC中,AE=DE(中点),AB=DC,∠EAB=∠EDC
∴△EAB和△EDC全等,则∠ABE=∠DCE=∠DCF=∠DAF.
则有∠ABF+∠BAF=∠DAF+∠BAF=90
∴∠AOB=90
∴AF垂直于BE
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询