已知命题p:函数f(x)=lg(x2+ax-a-1)在区间[2,+∞)上单调递增,命题q:函数g(x)=x3-ax2+3ax+1在区
已知命题p:函数f(x)=lg(x2+ax-a-1)在区间[2,+∞)上单调递增,命题q:函数g(x)=x3-ax2+3ax+1在区间(-∞,+∞)内既有极大值又有极小值...
已知命题p:函数f(x)=lg(x2+ax-a-1)在区间[2,+∞)上单调递增,命题q:函数g(x)=x3-ax2+3ax+1在区间(-∞,+∞)内既有极大值又有极小值,求使命题p、q中有且只有一个为真命题时实数a的取值范围.
展开
1个回答
展开全部
若命题p:函数f(x)=lg(x2+ax-a-1)在区间[2,+∞)上单调递增,为真命题
则a>-3
若命题q:函数g(x)=x3-ax2+3ax+1在区间(-∞,+∞)内既有极大值又有极小值,为真命题
则a<0或a>9
又∵命题p、q中有且只有一个为真命题
当命题p真q假时,0≤a≤9
当命题p假q真时,a≤-3
故使命题p、q中有且只有一个为真命题时实数a的取值范围为(-∞,-3]∪[0,9]
则a>-3
若命题q:函数g(x)=x3-ax2+3ax+1在区间(-∞,+∞)内既有极大值又有极小值,为真命题
则a<0或a>9
又∵命题p、q中有且只有一个为真命题
当命题p真q假时,0≤a≤9
当命题p假q真时,a≤-3
故使命题p、q中有且只有一个为真命题时实数a的取值范围为(-∞,-3]∪[0,9]
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询