(2013?珠海一模)如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的
(2013?珠海一模)如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.(1)求证:CD⊥AE;...
(2013?珠海一模)如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.(1)求证:CD⊥AE;(2)求证:PD⊥面ABE;(3)求二面角A-PD-C的平面角的正弦值.
展开
1个回答
展开全部
(1)证明:PA⊥底面ABCD,∴CD⊥PA.
又CD⊥AC,PA∩AC=A,故CD⊥面PAC,AE?面PAC,故CD⊥AE.
(2)证明:PA=AB=BC,∠ABC=60°,故PA=AC,E是PC的中点,故AE⊥PC,
由(1)知CD⊥AE,从而AE⊥面PCD,故AE⊥PD.易知BA⊥PD,故PD⊥面ABE.
(3)过点A作AF⊥PD,垂足为F,连接EF.
由(2)知,AE⊥面PCD,故∠AFE是二面角A-PD-C的一个平面角.
设AC=a,则AE=
a,AD=
a,PD=
a,
从而AF=
=
a,故 sin∠AFE=
=
.
又CD⊥AC,PA∩AC=A,故CD⊥面PAC,AE?面PAC,故CD⊥AE.
(2)证明:PA=AB=BC,∠ABC=60°,故PA=AC,E是PC的中点,故AE⊥PC,
由(1)知CD⊥AE,从而AE⊥面PCD,故AE⊥PD.易知BA⊥PD,故PD⊥面ABE.
(3)过点A作AF⊥PD,垂足为F,连接EF.
由(2)知,AE⊥面PCD,故∠AFE是二面角A-PD-C的一个平面角.
设AC=a,则AE=
| ||
2 |
2 | ||
|
|
从而AF=
PA?AD |
PD |
2 | ||
|
AE |
AF |
| ||
4 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询