如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.(1)证明
(Ⅰ)证明:在四棱锥P-ABCD中,因PA⊥底面ABCD,CD⊂平面ABCD,
故PA⊥CD,
∵AC⊥CD,PA∩AC=A,
∴CD⊥平面PAC,AE⊂平面PAC,
∴AE⊥CD。
(Ⅱ)证明:由PA=AB=BC,∠ABC=60°,可得AC=PA,
∵E是PC的中点,
∴AE⊥PC,
由(Ⅰ)知,AE⊥CD,且PC∩CD=C,
所以AE⊥平面PCD,而PD⊂平面PCD,
∴AE⊥PD,
∵PA⊥底面ABCD,
∴PA⊥AB,
又AD⊥AB,PA∩AD=A,
∴AB⊥面PAD,
∴AB⊥PD,
又AB∩AE=A,
综上得,PD⊥平面ABE。
(Ⅲ)解:由题设PA⊥底面ABCD,PA⊂平面PAD,
则平面PAD⊥平面ACD,交线为AD,
过点C作CF⊥AD,垂足为F,
故CF⊥平面PAD,过点F作FM⊥PD,垂足为M,
连接CM,故CM⊥PD,因此∠CMF是二面角A-PD-C的平面角,
由已知,可得∠CAD=30°,
设AC=a,可得PA=a,
故二面角A-PD-C的余弦值为
扩展资料:
四棱锥体积公式推导:
在四棱锥上做一个与四棱锥B1-ABCD同底等高的四棱柱A1B1C1D1-ABCD出来,沿底面的对角线BD与棱锥的顶角B1所在的面把四棱锥切开,把四棱锥的问题转化成三棱锥的问题。
这时候,两个三棱柱与两个三棱锥都分别是等底等高。他们的体积是分别相
等的。若能证明三棱锥体积是1/3sh,即可证明四棱锥的体积计算公式1/3sh。
连接A D1之后,发现三棱柱是由三个三棱锥组成,只要证明这三个三棱锥B1-ABD,A-A1B1D1,A-D1B1D体积相等就可以了。
B1-ABD与A-A1B1D1等底等高,所以体积相等。
B1-ABD换个角度看其实就是A-B1BD,A-B1BD与A-D1B1D等底等高,所以体积相等。所以B1-ABD与A-D1B1D体积相等。
也就是说组成三棱柱的这三个三棱锥体积相等,所以三棱锥体积是1/3sh
所以四棱锥的体积计算公式1/3sh。
四棱锥的底面面积S加顶点A'面积0除以2的平均面积1/2S的一个四棱柱乘以高h,就是四棱锥体积:
V=1/3(S+0)h=1/3Sh
又AC⊥CD,AC∩PA=A,
∴CD⊥平面PAC,又AE?平面PAC,
∴CD⊥AE;
(2)证明:∵PA⊥底面ABCD,AB?平面ABCD∴PA⊥AB,
又AD⊥AB,AD∩PA=A
∴AB⊥平面PAD,又PD?平面PAD∴AB⊥PD,
由PA=AB=BC,∠ABC=60°,则△ABC是正三角形.
∴AC=AB∴PA=PC
∵E是PC中点∴AE⊥PC
由(1)知AE⊥CD,又CD∩PC=C∴AE⊥平面PCD
∴AE⊥PD,又AB⊥PD,AB∩AE=A
∴PD⊥平面ABE;
(3)解:过E点作EM⊥PD于M点,连结AM,
由(2)知AE⊥平面PCD,则AE⊥PD,
则PD⊥平面AEM,∴AM⊥PD,
则∠AME是二面角A-PD-C的平面角.
设AC=a,AD=
a |
cos30° |
2a | ||
|
a2+
|
| ||
3 |
AM=
PA?AD |
PD |
a?
| ||||
|
2a | ||
|
在Rt△AEM中,AE=
| ||
2 |
AM2?AE2 |
|
| ||
14 |
则tan∠AME=
AE |
EM |
| ||||
|
7 |