(1)填空:如图,Rt△ABC中,∠C=90°,∠B=45°,AD是△ABC的角平分线,过点D作辅助线DE⊥AB于点E,则

(1)填空:如图,Rt△ABC中,∠C=90°,∠B=45°,AD是△ABC的角平分线,过点D作辅助线DE⊥AB于点E,则可以得到AC、CD、AB三条线段之间的数量关系为... (1)填空:如图,Rt△ABC中,∠C=90°,∠B=45°,AD是△ABC的角平分线,过点D作辅助线DE⊥AB于点E,则可以得到AC、CD、AB三条线段之间的数量关系为______.(2)如图,若将(1)中条件“Rt△ABC中,∠C=90°,∠B=45°”改为“△ABC中,∠C=2∠B”请问(1)中的结论是否仍然成立?证明你的猜想. 展开
 我来答
手机用户42846
推荐于2016-12-01 · TA获得超过110个赞
知道答主
回答量:116
采纳率:0%
帮助的人:118万
展开全部
解答:解:(1)∵∠C=∠AED=90°,AD是△ABC的角平分线,
∴CD=DE;
在Rt△ACD与Rt△AED中,
CD=DE
AD=AD(公共边)

∴Rt△ACD≌Rt△AED(HL),
∴AC=AE(全等三角形的对应边相等);
又∵∠B=45°,
∴∠DEB=45°(直角三角形的两个锐角互余),
∴DE=EB(等角对等边),
∴AB=AE+EB=AC+CD,即AB=AC+CD;

(2)(1)中的结论仍然成立.
理由如下:
∵AD是∠CAB的角平分线,
∴将△CAB沿AD折叠,点C落在AB边上的C′处,
∴△ACD≌△AC′D,
∴AC=AC′,CD=C′D,∠C=∠1=2∠B;
又∵∠1=∠2+∠B,
∴∠2=∠B,
∴C′D=C′B,
∴AB=AC′+BC′=AC+CD,即AB=AC+CD.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式