(1)填空:如图,Rt△ABC中,∠C=90°,∠B=45°,AD是△ABC的角平分线,过点D作辅助线DE⊥AB于点E,则
(1)填空:如图,Rt△ABC中,∠C=90°,∠B=45°,AD是△ABC的角平分线,过点D作辅助线DE⊥AB于点E,则可以得到AC、CD、AB三条线段之间的数量关系为...
(1)填空:如图,Rt△ABC中,∠C=90°,∠B=45°,AD是△ABC的角平分线,过点D作辅助线DE⊥AB于点E,则可以得到AC、CD、AB三条线段之间的数量关系为______.(2)如图,若将(1)中条件“Rt△ABC中,∠C=90°,∠B=45°”改为“△ABC中,∠C=2∠B”请问(1)中的结论是否仍然成立?证明你的猜想.
展开
1个回答
展开全部
解答:解:(1)∵∠C=∠AED=90°,AD是△ABC的角平分线,
∴CD=DE;
在Rt△ACD与Rt△AED中,
,
∴Rt△ACD≌Rt△AED(HL),
∴AC=AE(全等三角形的对应边相等);
又∵∠B=45°,
∴∠DEB=45°(直角三角形的两个锐角互余),
∴DE=EB(等角对等边),
∴AB=AE+EB=AC+CD,即AB=AC+CD;
(2)(1)中的结论仍然成立.
理由如下:
∵AD是∠CAB的角平分线,
∴将△CAB沿AD折叠,点C落在AB边上的C′处,
∴△ACD≌△AC′D,
∴AC=AC′,CD=C′D,∠C=∠1=2∠B;
又∵∠1=∠2+∠B,
∴∠2=∠B,
∴C′D=C′B,
∴AB=AC′+BC′=AC+CD,即AB=AC+CD.
∴CD=DE;
在Rt△ACD与Rt△AED中,
|
∴Rt△ACD≌Rt△AED(HL),
∴AC=AE(全等三角形的对应边相等);
又∵∠B=45°,
∴∠DEB=45°(直角三角形的两个锐角互余),
∴DE=EB(等角对等边),
∴AB=AE+EB=AC+CD,即AB=AC+CD;
(2)(1)中的结论仍然成立.
理由如下:
∵AD是∠CAB的角平分线,
∴将△CAB沿AD折叠,点C落在AB边上的C′处,
∴△ACD≌△AC′D,
∴AC=AC′,CD=C′D,∠C=∠1=2∠B;
又∵∠1=∠2+∠B,
∴∠2=∠B,
∴C′D=C′B,
∴AB=AC′+BC′=AC+CD,即AB=AC+CD.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询