如图,AC是圆O的直径,AC=10厘米,PA,PB是圆O的切线,A,B为切点,过A作AD⊥BP,交BP于D点,连接AB,BC
如图,AC是圆O的直径,AC=10厘米,PA,PB是圆O的切线,A,B为切点,过A作AD⊥BP,交BP于D点,连接AB,BC.(1)求证:△ABC∽△ADB;(2)若切线...
如图,AC是圆O的直径,AC=10厘米,PA,PB是圆O的切线,A,B为切点,过A作AD⊥BP,交BP于D点,连接AB,BC.(1)求证:△ABC∽△ADB;(2)若切线AP的长为12厘米,求弦AB的长.
展开
展开全部
解答:(1)证明:∵AC是圆O的直径,
∴∠ABC=90°,
∵AD⊥BP,
∴∠ADB=90°,
∴∠ABC=∠ADB,
∵PA是圆O的切线,
∴∠PAB=∠ACB,
又∵PA=PB,
∴∠PAB=∠ABD,
∴∠ABD=∠ACB,
[也可以为:∵PA,PB是圆O的切线,
∴∠ABD=∠ACB(弦切角定理)]
在△ABC和△ADB中:
∵∠ABC=∠ADB,∠ABD=∠ACB,
∴△ABC∽△ADB;
(2)解:连接OP,OB,
∵PA是⊙O的切线,AC是⊙O的直径,
∴∠ABC=∠OAP,
在Rt△AOP中,AP=12厘米,OA=5厘米
∴OP=13厘米
∵PA、PB是⊙O的切线,
∴
=
,
∴∠AOE=
∠AOB=∠ACB,
在△ABC与△PAO中,
∵∠AOE=∠ACB,∠ABC=∠OAP,
∴△ABC∽△PAO,
∴
=
,
∴
=
,
∴AB=
厘米.
∴∠ABC=90°,
∵AD⊥BP,
∴∠ADB=90°,
∴∠ABC=∠ADB,
∵PA是圆O的切线,
∴∠PAB=∠ACB,
又∵PA=PB,
∴∠PAB=∠ABD,
∴∠ABD=∠ACB,
[也可以为:∵PA,PB是圆O的切线,
∴∠ABD=∠ACB(弦切角定理)]
在△ABC和△ADB中:
∵∠ABC=∠ADB,∠ABD=∠ACB,
∴△ABC∽△ADB;
(2)解:连接OP,OB,
∵PA是⊙O的切线,AC是⊙O的直径,
∴∠ABC=∠OAP,
在Rt△AOP中,AP=12厘米,OA=5厘米
∴OP=13厘米
∵PA、PB是⊙O的切线,
∴
AE |
BE |
∴∠AOE=
1 |
2 |
在△ABC与△PAO中,
∵∠AOE=∠ACB,∠ABC=∠OAP,
∴△ABC∽△PAO,
∴
AB |
AC |
AP |
OP |
∴
AB |
10 |
12 |
13 |
∴AB=
120 |
13 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询