在△ABC中,AC=BC=2,∠C=90°,将一块等腰直角三角形的铁板放在斜边AB的重点P处,将三角板绕点P转,三角板
展开全部
解:(1)连接PC.
∵△ABC是等腰直角三角形,P是AB的中点,
∴CP=PB,CP⊥AB,∠ACP=
1
2
∠ACB=45°.
∴∠ACP=∠B=45°.
又∵∠DPC+∠CPE=∠BPE+∠CPE=90°,
∴∠DPC=∠BPE.
∴△PCD≌△PBE.
∴PD=PE;
(2)共有四种情况:
①当点C与点E重合,即CE=0时,PE=PB;
②CE=2-
2
,此时PB=BE;
③当CE=1时,此时PE=BE;
④当E在CB的延长线上,且CE=2+
2
时,此时PB=EB;
(3)MD:ME=1:3.
过点M作MF⊥AC,MH⊥BC,垂足分别是F、H.
∴MH∥AC,MF∥BC.
∴四边形CFMH是平行四边形.
∵∠C=90°,
∴▱CFMH是矩形.
∴∠FMH=90°,MF=CH.
∵
CH
HB
=
AM
MB
=
1
3
,HB=MH,
∴
MF
MH
=
1
3
.
∵∠DMF+∠DMH=∠DMH+∠EMH=90°,
∴∠DMF=∠EMH.
∵∠MFD=∠MHE=90°,
∴△MDF∽△MEH.
∴
MD
ME
=
MF
MH
=
1
3
.
∵△ABC是等腰直角三角形,P是AB的中点,
∴CP=PB,CP⊥AB,∠ACP=
1
2
∠ACB=45°.
∴∠ACP=∠B=45°.
又∵∠DPC+∠CPE=∠BPE+∠CPE=90°,
∴∠DPC=∠BPE.
∴△PCD≌△PBE.
∴PD=PE;
(2)共有四种情况:
①当点C与点E重合,即CE=0时,PE=PB;
②CE=2-
2
,此时PB=BE;
③当CE=1时,此时PE=BE;
④当E在CB的延长线上,且CE=2+
2
时,此时PB=EB;
(3)MD:ME=1:3.
过点M作MF⊥AC,MH⊥BC,垂足分别是F、H.
∴MH∥AC,MF∥BC.
∴四边形CFMH是平行四边形.
∵∠C=90°,
∴▱CFMH是矩形.
∴∠FMH=90°,MF=CH.
∵
CH
HB
=
AM
MB
=
1
3
,HB=MH,
∴
MF
MH
=
1
3
.
∵∠DMF+∠DMH=∠DMH+∠EMH=90°,
∴∠DMF=∠EMH.
∵∠MFD=∠MHE=90°,
∴△MDF∽△MEH.
∴
MD
ME
=
MF
MH
=
1
3
.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询