二阶系统的响应速率为什么会减慢

 我来答
当代教育科技知识库
高能答主

2023-01-07 · 擅长科技新能源相关技术,且研究历史文化。
当代教育科技知识库
采纳数:1828 获赞数:387346

向TA提问 私信TA
展开全部

二阶系统稳态方程 ω^2/{s(s+2ωξs)} 写成上面的形式后 调节时间 t=3.5/(ωξ)。

系统响应慢

二阶系统控制系统按数学模型分类时的一种形式。是用数学模型可表示为二阶线性常微分方程的系统.二阶系统的解的形式,可由对应传递函数W(s)的分母多项式P(s)来判别和划分。P(s)的一般形式为变换算子s的二次三项代数式,经标准化后可记为代数方程P(s)=0的根,可能出现四种情况:

1、两个实根的情况,对应于两个串联的一阶系统,如果两个根都是负值,就为非周期性收敛的稳定情况。

2、当a1=0,a2>0,即一对共轭虚根的情况,将引起频率固定的等幅振荡,是系统不稳定的一种表现。

3、当a1<0,a1-4a2<0,即共轭复根有正实部的情况,对应于系统中发生发散型的振荡,也是不稳定的一种表现。

4、当a1>0,a1-4a2<0,即共轭复根有负实部的情况,对应于收敛型振荡,且实部和虚部的数值比例对输出过程有很大的影响,一般以阻尼系数ζ来表征,常取在0.4~0.8之间为宜。

当ζ>0.8后,振荡的作用就不显著,输出的速度也比较慢。而ζ<0.4时,输出量就带有明显的振荡和较大的超调量,衰减也较慢,这也是控制系统中所不希望的。

扩展资料:

二阶系统 控制系统按数学模型分类时的一种形式.是用数学模型可表示为二阶线性常微分方程的系统.二阶系统的解的形式,可由对应传递函数W(s)的分母多项式P(s)来判别和划分.P(s)的一般形式为变换算子s的二次三项代数式,经标准化后可记为

代数方程P(s)=0的根,可能出现四种情况:

1.两个实根的情况,对应于两个串联的一阶系统.如果两个根都是负值,就为非周期性收敛的稳定情况.

2.当a1=0,a2>0,即一对共轭虚根的情况,将引起频率固定的等幅振荡,是系统不稳定的一种表现.

3.当a1<0,a1-4a2<0,即共轭复根有正实部的情况,对应于系统中发生发散型的振荡,也是不稳定的一种表现.

4.当a1>0,a1-4a2<0,即共轭复根有负实部的情况,对应于收敛型振荡,且实部和虚部的数值比例对输出过程有很大的影响.一般以阻尼系数ζ来表征,常取

在0.4~0.8之间为宜.当ζ>0.8后,振荡的作用就不显著,输出的速度也比较慢.而ζ<0.4时,输出量就带有明显的振荡和较大的超调量,衰减也较慢,这也是控制系统中所不希望的.

参考资料来源:百度百科-二阶系统

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式