超几何分布和二项分布怎么区分?
展开全部
就一句话,一个是有放回抽取(二项分布),另一个是无放回抽取(超几何分布).
具一个例子,20个小球里面有5个黑的,15个白的.从中抽取3次,有X个黑球.如果每次抽出都放回去,第二次再抽,就每次抽到黑球概率都是1/4,这一次与其他次都互相独立,这明显是独立重复试验,对应的概率模型是二项分布.如果每次抽取不放回去,就是拿3个,那么这3个里面出现的黑球X就是超几何分布.
特征还是非常明显的。比如还是上面那个例子,我取6次,如果不放回,里面也最多有5个黑球;但是有放回抽取,可以6次都抽到黑球.
它们之间还有联系,就是总体个数比起抽取次数来说非常大的时候,就相互很接近了.比如1000个球,里面200黑800白,抽取3次。如果每次放回去抽黑球的概率每次都是1/5,不放回去第一次抽到的概率是1/5,第二次如果第一次抽到白的就是200/999还是约等于1/5,第一次抽到黑的则是199/999约等于1/5,第三次抽取同理,每次概率约等于1/5,就可以近似按照二项分布的独立重复试验来计算。你们只提问,不采纳正确答案,回答都没有劲!谢谢管理员推荐采纳!!
朋友,请【采纳答案】,您的采纳是我答题的动力,如果没有明白,请追问。谢谢。
具一个例子,20个小球里面有5个黑的,15个白的.从中抽取3次,有X个黑球.如果每次抽出都放回去,第二次再抽,就每次抽到黑球概率都是1/4,这一次与其他次都互相独立,这明显是独立重复试验,对应的概率模型是二项分布.如果每次抽取不放回去,就是拿3个,那么这3个里面出现的黑球X就是超几何分布.
特征还是非常明显的。比如还是上面那个例子,我取6次,如果不放回,里面也最多有5个黑球;但是有放回抽取,可以6次都抽到黑球.
它们之间还有联系,就是总体个数比起抽取次数来说非常大的时候,就相互很接近了.比如1000个球,里面200黑800白,抽取3次。如果每次放回去抽黑球的概率每次都是1/5,不放回去第一次抽到的概率是1/5,第二次如果第一次抽到白的就是200/999还是约等于1/5,第一次抽到黑的则是199/999约等于1/5,第三次抽取同理,每次概率约等于1/5,就可以近似按照二项分布的独立重复试验来计算。你们只提问,不采纳正确答案,回答都没有劲!谢谢管理员推荐采纳!!
朋友,请【采纳答案】,您的采纳是我答题的动力,如果没有明白,请追问。谢谢。
展开全部
就一句话,一个是有放回抽取(二项分布),另一个是无放回抽取(超几何分布).
具一个例子,20个小球里面有5个黑的,15个白的.从中抽取3次,有X个黑球.如果每次抽出都放回去,第二次再抽,就每次抽到黑球概率都是1/4,这一次与其他次都互相独立,这明显是独立重复试验,对应的概率模型是二项分布.如果每次抽取不放回去,就是拿3个,那么这3个里面出现的黑球X就是超几何分布.
特征还是非常明显的.比如还是上面那个例子,我取6次,如果不放回,里面也最多有5个黑球;但是有放回抽取,可以6次都抽到黑球.
它们之间还有联系,就是总体个数比起抽取次数来说非常大的时候,就相互很接近了.比如1000个球,里面200黑800白,抽取3次.如果每次放回去抽黑球的概率每次都是1/5,不放回去第一次抽到的概率是1/5,第二次如果第一次抽到白的就是200/999还是约等于1/5,第一次抽到黑的则是199/999约等于1/5,第三次抽取同理,每次概率约等于1/5,就可以近似按照二项分布的独立重复试验来计算.
具一个例子,20个小球里面有5个黑的,15个白的.从中抽取3次,有X个黑球.如果每次抽出都放回去,第二次再抽,就每次抽到黑球概率都是1/4,这一次与其他次都互相独立,这明显是独立重复试验,对应的概率模型是二项分布.如果每次抽取不放回去,就是拿3个,那么这3个里面出现的黑球X就是超几何分布.
特征还是非常明显的.比如还是上面那个例子,我取6次,如果不放回,里面也最多有5个黑球;但是有放回抽取,可以6次都抽到黑球.
它们之间还有联系,就是总体个数比起抽取次数来说非常大的时候,就相互很接近了.比如1000个球,里面200黑800白,抽取3次.如果每次放回去抽黑球的概率每次都是1/5,不放回去第一次抽到的概率是1/5,第二次如果第一次抽到白的就是200/999还是约等于1/5,第一次抽到黑的则是199/999约等于1/5,第三次抽取同理,每次概率约等于1/5,就可以近似按照二项分布的独立重复试验来计算.
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
区别:不放回抽取(每次概率要改变)
放回再抽取(每次概率相同)
放回再抽取(每次概率相同)
追答
前者用组合数之比
后者用二项式展开式
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询