向量坐标相乘怎么算?

 我来答
内蒙古恒学教育
2022-11-10 · 专注于教育培训升学规划
内蒙古恒学教育
向TA提问
展开全部
两个坐标向量相乘是a*b=x1x2+y1y2=|a||b|cosθ。
一般向量之间不叫乘积,而叫数量积,如a*b叫做a与b的数量积或a点乘b。
平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。
帐号已注销
推荐于2019-08-20 · TA获得超过33.9万个赞
知道小有建树答主
回答量:403
采纳率:0%
帮助的人:14.8万
展开全部

比如已知向量AB=(2,3)与向量SD(5,8),求向量AB×向量SD=? 向量AB×向量SD=2×5+3×8=34

向量相乘分数量积、向量积两种:

向量 a = (x, y, z),

向量 b = (u, v, w),

数量积 (点积): a·b = xu+yv+zw

向量积 (叉积): a×b =

|i j k|

|x y z|

|u v w|

向量的记法:印刷体记作粗体的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。 如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。

扩展资料:

一般印刷用黑体的小写英文字母(a、b、c等)来表示,手写用在a、b、c等字母上加一箭头(→)表示,如  ,也可以用大写字母AB、CD上加一箭头(→)等表示,如, 。

平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为一组基底。

 为平面直角坐标系内的任意向量,以坐标原点O为起点作向量  。

平面向量基本定理可知,有且只有一对实数(x,y),使得  ,因此把实数对  叫做向量  的坐标,记作  。这就是向量  的坐标表示。其中  就是点  的坐标。向量  称为点P的位置向量。

方向相同或相反的非零向量叫做平行(或共线)向量.向量a、b平行(共线),记作a∥b。零向量长度为零,是起点与终点重合的向量,其方向不确定。我们规定:零向量与任一向量平行。平行于同一直线的一组向量是共线向量

若a=(x,y),b=(m,n),则a//b→a×b=xn-ym=0

参考资料:百度百科---向量

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
小葡萄学姐
高粉答主

2018-09-06 · 专注解答生活问题,让生活更快乐
小葡萄学姐
采纳数:447 获赞数:432669

向TA提问 私信TA
展开全部

向量a(x1,y1),向量b(x2,y2)

向量a点乘向量b等于x1x2+y1y2



扩展资料

实数λ和向量a的叉乘乘积是一个向量,记作λa,且|λa|=|λ|*|a|。
当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0,方向任意。当a=0时,对于任意实数λ,都有λa=0。

注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当 |λ| >1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的|λ|倍

当|λ|<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的 |λ|倍。
实数p和向量a的点乘乘积是一个数。
数与向量的乘法满足下面的运算律
结合律:(λa)·b=λ(a·b)=(a·λb)。

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.
数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.
数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。
需要注意的是:向量的加减乘(向量没有除法)运算满足实数加减乘运算法则。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
佳爷说历史
高粉答主

2018-08-15 · 关注我不会让你失望
知道小有建树答主
回答量:1155
采纳率:100%
帮助的人:31.2万
展开全部

向量相乘用坐标表示的公式是:

已知两个非零向量a,b,作OA=a,OB=b,则∠AOB称作向量a和向量b的夹角,记作θ并规定0≤θ≤π,则两个向量的数量积(内积、点积)是一个数量(没有方向),记作a·b。

若a、b不共线,则 

若a、b共线,则  。

扩展资料:

1、向量,在数学中是指具有大小和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的只有大小,没有方向的量叫做数量(物理学中称标量)。

2、向量代数表示方法:一般印刷用黑体的小写英文字母(a、b、c等)来表示,手写用在a、b、c等字母上加一箭头(→)表示,如:  ,也可以用大写字母AB、CD上加一箭头(→)等表示,如:  。

参考资料:向量_百度百科   向量积_百度百科

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
阿西宝呗
高粉答主

2018-08-21 · 繁杂信息太多,你要学会辨别
知道答主
回答量:15
采纳率:100%
帮助的人:4304
展开全部

向量相乘可以分内积和外积

内积就是: ab=丨a丨丨b丨cosα (注意:内积没有方向,叫做点乘)

外积就是: a×b=丨a丨丨b丨sinα (注意:外积是有方向的。)

拓展资料:

证明

为了更好地推导,我们需要加入三个轴对齐的单位向量i,j,k。

i,j,k满足以下特点:

i = j x k; j = k x i;k = i x j;

k x j = –i;i x k = –j; j x i = –k;

i x i = j x j = k x k = 0;(0是指0向量)

由此可知,i,j,k是三个相互垂直的向量。它们刚好可以构成一个坐标系。

这三个向量的特例就是 i = (1,0,0) j = (0,1,0) k = (0,0,1)。

对于处于i,j,k构成的坐标系中的向量u,v我们可以如下表示:

u = Xu*i + Yu*j + Zu*k;

v = Xv*i + Yv*j + Zv*k;

那么 u x v = (Xu*i + Yu*j + Zu*k) x (Xv*i + Yv*j + Zv*k)

= Xu*Xv*(i x i) + Xu*Yv*(i x j) + Xu*Zv*(i x k) + Yu*Xv*(j x i) + Yu*Yv*(j x j) + Yu*Zv*(j x k) + Zu*Xv*( k x i ) + Zu*Yv*(k x j) + Zu*Zv*(k x k)

由于上面的i,j,k三个向量的特点,所以,最后的结果可以简化为

u x v = (Yu*Zv – Zu*Yv)*i + (Zu*Xv – Xu*Zv)*j + (Xu*Yv – Yu*Xv)*k。

参考资料:向量积-百度百科

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(12)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式