特征值的计算方法

 我来答
Dilraba学长
高粉答主

2018-12-14 · 听从你心 爱你所爱 无问西东
Dilraba学长
采纳数:1107 获赞数:411027

向TA提问 私信TA
展开全部

设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。

扩展资料

判断相似矩阵的必要条件

设有n阶矩阵A和B,若A和B相似(A∽B),则有:

1、A的特征值与B的特征值相同——λ(A)=λ(B),特别地,λ(A)=λ(Λ),Λ为A的对角矩阵

2、A的特征多项式与B的特征多项式相同——|λE-A|=|λE-B|;

3、A的迹等于B的迹——trA=trB/  ,其中i=1,2,…n(即主对角线上元素的和);

4、A的行列式值等于B的行列式值——|A|=|B|;

5、A的秩等于B的秩——r(A)=r(B)。[1]

因而A与B的特征值是否相同是判断A与B是否相似的根本依据。

笑满惑9712
2016-05-12 · TA获得超过145个赞
知道答主
回答量:185
采纳率:0%
帮助的人:59.7万
展开全部


求n阶矩阵A的特征值的基本方法:
根据定义可改写为关系式,为单位矩阵(其形式为主对角线元素为λ- ,其余元素乘以-1)。要求向量具有非零解,即求齐次线性方程组有非零解的值。即要求行列式。 解次行列式获得的值即为矩阵A的特征值。将此值回代入原式求得相应的,即为输入这个行列式的特征向量。
具体操作以右图为例。  
定义1设是一个阶方阵(即使一个n*n的矩阵),是一个数,如果方程
(1)
存在非零解向量,则称为的一个特征值,相应的非零解向量称为属于特征值的特征向量.
(1)式也可写成,
(2)
这是个未知数个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式
, (3)

上式是以为未知数的一元次方程,称为方阵的特征方程.其左端是的次多项式,记作,称为方阵的特征多项式.
==
=
显然,的特征值就是特征方程的解.特征方程在复数范围内恒有解,其个数为方程的次数(重根按重数计算),因此,阶矩阵有个特征值.
设阶矩阵的特征值为由多项式的根与系数之间的关系,不难证明
(Ⅰ)
(Ⅱ)
若为的一个特征值,则一定是方程的根,因此又称特征根,若为方程的重根,则称为的重特征根.方程的每一个非零解向量都是相应于的特征向量,于是我们可以得到求矩阵的全部特征值和特征向量的方法如下:
第一步:计算的特征多项式;
第二步:求出特征方程的全部根,即为的全部特征值;
第三步:对于的每一个特征值,求出齐次线性方程组:

的一个基础解系,则的属于特征值的全部特征向量是
(其中是不全为零的任意实数).
[注]:若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定.反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值.
由以上讨论可知,对于方阵的每一个特征值,我们都可以求出其全部的特征向量.但对于属于不同特征值的特征向量,它们之间存在什么关系呢?这一问题的讨论在对角化理论中有很重要的作用.对此我们给出以下结论:

定理1 属于不同特征值的特征向量一定线性无关.

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2023-05-06
展开全部

特征值是方阵的一种特殊性质,是数,与方阵本身相关。计算特征值的方法如下:1. 假设A是n阶方阵,其特征值为λ,特征向量为x;2. 因为特征向量与特征值相关,即Ax=λx,移项可得到(A-λE)x=0,其中E为n阶单位矩阵;3. 对于非零解,方程(A-λE)x=0有解当且仅当方程系数矩阵(A-λE)的行列式det(A-λE)=0;4. 解出方程det(A-λE)=0的解λ1,λ2,…,λn,即为矩阵A的n个特征值;5. 对于每个特征值λi,求解其对应的特征向量xi,即求解方程(A-λiE)xi=0,得到n个线性无关的特征向量。特征值和特征向量的计算是矩阵分析和线性代数中的重要概念,广泛应用于数学、物理学、工程学等领域。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
敲黑板划重点_
2019-12-21 · TA获得超过3.8万个赞
知道大有可为答主
回答量:9370
采纳率:77%
帮助的人:319万
展开全部
第一步:计算的特征多项式;
第二步:求出特征方程的全部根,即为的全部特征值;
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
新电影关注者
高粉答主

2020-11-09 · 醉心答题,欢迎关注
知道小有建树答主
回答量:493
采纳率:17%
帮助的人:40.4万
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式