求助一道高等代数多项式的问题

证明:多项式g(x)=1+x^2+x^4...+x^2n能整除f(x)=1+x^4+x^8...+x^4n的充分必要条件是n为偶数... 证明:多项式g(x)=1+x^2+x^4...+x^2n能整除f(x)=1+x^4+x^8...+x^4n的充分必要条件是n为偶数 展开
数论_高数
2010-09-25 · TA获得超过4848个赞
知道大有可为答主
回答量:993
采纳率:0%
帮助的人:1832万
展开全部
若n=2m
f(x)=(x^(8m+4)-1)/(x^4-1)
=(x^(4m+2)-1)(x^(4m+2)+1)/(x^4-1)
=(1+x^2+x^4+...+x^4m)(x^(4m+2)+1)/(x^2+1)
=g(x)*[(x^2)^(2m+1)+1]/(x^2+1),而x^2+1整除[(x^2)^(2m+1)+1],所以g(x)整除f(x).

反过来,一个反例即可:n=1时g(x)=1+x^2,f(x)=1+x^4,g(x)不整除f(x).
证毕。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式