
初中奥赛题
四边形ABCD是圆内接四边形,AC是圆的直径,BD⊥AC于E,F在DA的延长线上,连结BF,G在BA的延长线上,使得DG‖BF。H在GF的延长线上,CH⊥GF。证明:B、...
四边形ABCD是圆内接四边形,AC是圆的直径,BD⊥AC于E,F在DA 的延长线上,连结BF,G在BA的延长线上,使得DG‖BF。H在GF的延长线上,CH⊥GF。证明:B、E、F、H四点共圆。
展开
展开全部
(1)
AB=AD ==>弧AB=弧AD,∠ADB=∠ABD
弧AB对应的圆周角有两个∠ACB=∠ADB
弧AD对应的圆周角有两个∠ACD=∠ABD
∠ACB=∠ADB=∠ABD=∠ACD
∠ADB=180-∠BAD=90-∠DFC
∠ADB+∠DFC=90
CD⊥DF
(2)过F做FG垂直BC
因为∠ACB=∠ADB
又∠BFC=∠BAD
所以∠FBC=∠ABD=∠ADB=∠ACB
则FB=FC
所以FG平分BC,G为BC中点,∠GFC=1/2∠BAD=∠DFC
证明三角形FGC全等于三角形DFC(∠GFC=∠DFC,FC=FC,∠ACB=∠ACD)
所以CD=GC=1/2BC
BC=2CD
AB=AD ==>弧AB=弧AD,∠ADB=∠ABD
弧AB对应的圆周角有两个∠ACB=∠ADB
弧AD对应的圆周角有两个∠ACD=∠ABD
∠ACB=∠ADB=∠ABD=∠ACD
∠ADB=180-∠BAD=90-∠DFC
∠ADB+∠DFC=90
CD⊥DF
(2)过F做FG垂直BC
因为∠ACB=∠ADB
又∠BFC=∠BAD
所以∠FBC=∠ABD=∠ADB=∠ACB
则FB=FC
所以FG平分BC,G为BC中点,∠GFC=1/2∠BAD=∠DFC
证明三角形FGC全等于三角形DFC(∠GFC=∠DFC,FC=FC,∠ACB=∠ACD)
所以CD=GC=1/2BC
BC=2CD
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询