数学题:在△ABC中,角A,B,C的对边分别为abc,且asinC/1-cosA=√3c.多谢!
在△ABC中,角A,B,C的对边分别为abc,且asinC/1-cosA=√3c.(1)若a=2,求△ABC外接圆的半径.(2)若b+c=10,S△ABC=4√3,求a的...
在△ABC中,角A,B,C的对边分别为abc,且asinC/1-cosA=√3c.(1)若a=2,求△ABC外接圆的半径.(2)若b+c=10,S△ABC=4√3,求a的值.
展开
2018-12-17 · 知道合伙人教育行家
关注
展开全部
asinC/(1-cosA)=√3c
asinC = √3c(1-cosA)
asinC = √3c-√3ccosA
a=2RsinA,c=2RsinC
2RsinAsinC = 2√3RsinC-2√3RsinCcosA
sinA = √3-√3cosA
sinA+√3cosA = √3
1/2sinA+(√3/2)cosA = √3/2
sinAcos(π/3)+cosAsin(π/3) = √3/2
sin(A+π/3)=√3/2
0<A<π
∴A+π/3=2π/3
∴A=π/3
===============
(1)
∵a=2
又:a=2RsinA
∴R=a/(2sinA)=2/(2*√3/2) = 2√3/3
即:△ABC外接圆的半径 2√3/3
=====================
(2)
S△ABC=4√3,
(1/2)bcsinA=4√3
bc=8√3/sinA= 8√3/(√3/2) = 16
b+c=10
a²=b²+c²-2bccosA = b²+c²-2bc*1/2 = b²+c²-bc = (b+c)²-3bc = 10²-3×16 = 52
a=√52 = 2√13
asinC = √3c(1-cosA)
asinC = √3c-√3ccosA
a=2RsinA,c=2RsinC
2RsinAsinC = 2√3RsinC-2√3RsinCcosA
sinA = √3-√3cosA
sinA+√3cosA = √3
1/2sinA+(√3/2)cosA = √3/2
sinAcos(π/3)+cosAsin(π/3) = √3/2
sin(A+π/3)=√3/2
0<A<π
∴A+π/3=2π/3
∴A=π/3
===============
(1)
∵a=2
又:a=2RsinA
∴R=a/(2sinA)=2/(2*√3/2) = 2√3/3
即:△ABC外接圆的半径 2√3/3
=====================
(2)
S△ABC=4√3,
(1/2)bcsinA=4√3
bc=8√3/sinA= 8√3/(√3/2) = 16
b+c=10
a²=b²+c²-2bccosA = b²+c²-2bc*1/2 = b²+c²-bc = (b+c)²-3bc = 10²-3×16 = 52
a=√52 = 2√13
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询