y’=(y’’)²通解
1个回答
展开全部
显然,y=0是原方程的解
若当y≠0时,
∵(x-2xy-y^2)y'+y^2=0
==>y^2dx/dy+(1-2y)x=y^2.(1)
∴方程(1)是关于y一阶线性微分
于是,由一阶线性微分方程通解公式,得方程(1)的通解是
x=y^2(1+ce^(1/y))
(c是常数)
故原方程的通解是y=0和x=y^2(1+ce^(1/y)).
若当y≠0时,
∵(x-2xy-y^2)y'+y^2=0
==>y^2dx/dy+(1-2y)x=y^2.(1)
∴方程(1)是关于y一阶线性微分
于是,由一阶线性微分方程通解公式,得方程(1)的通解是
x=y^2(1+ce^(1/y))
(c是常数)
故原方程的通解是y=0和x=y^2(1+ce^(1/y)).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |