y’=(y’’)²通解

 我来答
青孝羽歌
2020-02-21 · TA获得超过3.6万个赞
知道小有建树答主
回答量:1.3万
采纳率:27%
帮助的人:958万
展开全部
显然,y=0是原方程的解
若当y≠0时,
∵(x-2xy-y^2)y'+y^2=0
==>y^2dx/dy+(1-2y)x=y^2.(1)
∴方程(1)是关于y一阶线性微分
于是,由一阶线性微分方程通解公式,得方程(1)的通解是
x=y^2(1+ce^(1/y))
(c是常数)
故原方程的通解是y=0和x=y^2(1+ce^(1/y)).
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式