3个回答
展开全部
解:cos(a+π/3)=cosacos(π/3)-sinasin(π/3)=(1/2)cosa-(√3/2)sina
=(1/2)cosa-(√3/2)√[1-(cosa)^2]=-1/3;
即:cosa+2/3=√{3[1-(cosa)^2]};
方程两边同时平方,得:(cosa)^2+(4/3)cosa+(4/9)=3-3(cosa)^2
即:4(cosa)^2+(4/3)cosa-23/9=0;
△=(4/3)^2-4*4*(-23/9)=(16/9)(1+23)=6*(64/9);
cosa=[(4/3)+/-(8/3)]√6/8=(1+/-2√6)/6;因为0<a<π/2;所以,负值舍去:
cosa=(1+2√6)/6;
2a+5π/12=2arccos[(1+2√6)/6]+5π/12
=(1/2)cosa-(√3/2)√[1-(cosa)^2]=-1/3;
即:cosa+2/3=√{3[1-(cosa)^2]};
方程两边同时平方,得:(cosa)^2+(4/3)cosa+(4/9)=3-3(cosa)^2
即:4(cosa)^2+(4/3)cosa-23/9=0;
△=(4/3)^2-4*4*(-23/9)=(16/9)(1+23)=6*(64/9);
cosa=[(4/3)+/-(8/3)]√6/8=(1+/-2√6)/6;因为0<a<π/2;所以,负值舍去:
cosa=(1+2√6)/6;
2a+5π/12=2arccos[(1+2√6)/6]+5π/12
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询