大神们,请问这道题怎么做呀?

 我来答
zhangsonglin_c
高粉答主

2020-12-15 · 醉心答题,欢迎关注
知道大有可为答主
回答量:3.7万
采纳率:83%
帮助的人:6832万
展开全部

(1)当∠ADC=π/3(60°)时,△ADC是60°-30°直角三角形,如图:

AC=BC=2√3,∠BCD=60°+30°=90°,BC⊥DC,△BCD面积:

4×2√3/2=4√3(顷)

(2)比较复杂,解法详见下图:

首先,△BCD的边CD=4,是固定的,因此△BCD的CD边上的高最大,面积就是最大。就是B到直线CD的距离最大。

据此,我们想办法搞清楚B点的轨迹是什么曲线。

固定C、D,则A的轨迹是以D为圆心,半径为2的圆(图中红色的圆)。

我们先得到几个特殊位置的B,然后猜想B的轨迹的形状。

<1>A位于CD上的A1点,这时,AC有最小长度A1C,B点是以A1C为边的等边三角形的另一个顶点,位于CD上方的顶点B1,

<2>A位于CD的延长线上的A3点,此时AC有最大长度,2+4=6,B点是以A3C为边的等边三角形的另一个顶点,位于CD上方的顶点B3.

<3>一般位置的A,AC与圆D有两个交点A、A',对应的B有两个位置,B、B',两个等边三角形ABC与A'B'C共顶点C,较远的B'对应的△B'CD面积更大。

显然,止面得到的4个B的点位,不可能位于一直线上,猜测,B在轨迹应该是一个圆。

<4>考虑一个特殊情况,A在图中A2位置,A2C与圆D相切,DA2与A2C相互垂直,就是(1)小题的情况,此时B2C与CD垂直,B2是B最右边的点。∠A2DC=60°,DA2与A3B3平行。

<5>延长DA2与CB3相交于O,根据平行线截得比例线段得,OB3=2,OC=4,

连接OB,观察两个三角形OBC,与DAC,∠ACD=∠BCD-60°,∠BCO=∠BCD-60°,∴∠ACD=∠BCO;

又OC=DC,BC=AC(等边),∴△ACD≌△BCO,OB=OA=2.

因此,B的轨迹是O为圆心,半径为2的圆。

<6>圆O的最高点B0,对应面积最大的△BCD

过O作CD的垂线OA1,B0A1=2+2√3

△BCD最大面积=4(2+2√3)/2=4(1+√3)(顷)









brain39
2020-12-16 · TA获得超过6097个赞
知道大有可为答主
回答量:6365
采纳率:81%
帮助的人:48.2万
展开全部
直接按单相来计算。Sa=220*11, Pa=P/3, 用Sa*Sa=Pa*Pa+Qa*Qa可得Qa。阻抗角=arctg(Qa/Pa) 。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式