1/x√(1+x^4)dx 求不定积分,谢谢~
展开全部
您道题做基本思路14现x化24现:
∫1/x√(1+x^4)*dx
=∫x/x^2√(1+x^4)*dx
=1/2*∫1/x^2√(1+(x^2)^2)*d(x^2)
令x^2=sinh
t
(另种令x^2=tan
t,我更喜欢种)
则√(1+(x^2)^2)=cosh
t
原式=1/2*∫1/(sinh
t
cosh
t)*dsinh
t
=1/2*∫1/sinh
t
*dt
=1/2*ln
tanh
(t/2)+C
=1/2*ln((cosh
t
-
1)/sinh
t)+C
=1/2*ln
((√(1+x^4)
-
1)/x^2)+C
希望能帮您
∫1/x√(1+x^4)*dx
=∫x/x^2√(1+x^4)*dx
=1/2*∫1/x^2√(1+(x^2)^2)*d(x^2)
令x^2=sinh
t
(另种令x^2=tan
t,我更喜欢种)
则√(1+(x^2)^2)=cosh
t
原式=1/2*∫1/(sinh
t
cosh
t)*dsinh
t
=1/2*∫1/sinh
t
*dt
=1/2*ln
tanh
(t/2)+C
=1/2*ln((cosh
t
-
1)/sinh
t)+C
=1/2*ln
((√(1+x^4)
-
1)/x^2)+C
希望能帮您
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询