设定义在[-2,2]上的奇函数f(x)在区间【0,2】单调递减,若f(m)+f(m-1)>0,求实数m的取值范围

设定义在[-2,2]上的奇函数f(x)在区间[0,2]单调递减,若f(m)+f(m-1)>0,求实数m的取值范围... 设定义在[-2,2]上的奇函数f(x)在区间[0,2]单调递减,若f(m)+f(m-1)>0,求实数m的取值范围 展开
我不是他舅
2010-09-27 · TA获得超过138万个赞
知道顶级答主
回答量:29.6万
采纳率:79%
帮助的人:34.8亿
展开全部
奇函数关于原点对称
且在[0,2]递减
则在[-2,0]也是递减
且两个区间都包括0
所以在[-2,2]是减函数

f(m-1)>-f(m)
奇函数
f(m-1)>f(-m)
减函数
-2<=m-1<-m<=2
所以m>=-1
m<1/2
m>=-2

所以-1<=m<1/2
chenzuilangzi
2010-09-27 · TA获得超过2.1万个赞
知道大有可为答主
回答量:1987
采纳率:0%
帮助的人:1139万
展开全部
因为f(x)在区间【0,2】单调递减
又因为是奇函数,关于原点对称且f(0)=0
所以f(x)在[-2,2]上单调递减
f(m-1)=-f(1-m)
f(m)+f(m-1)>0
f(m)>-f(m-1)即f(m)>f(1-m)
因为单调递减
所以m<1-m,m<1/2
又因为-2≤m≤2且-2≤m-1≤2
综上-1≤m<1/2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式