f(x)=cos(2X-π/3)+sin(x-π/4)sin(x+π/4)的最小正周期和图像的对称轴方程是什么?
f(x)=cos(2X-π/3)+sin(x-π/4)sin(x+π/4)的最小正周期和图像的对称轴方程是什么?在【-π/12,π/2】的值域是多少?越快越好,谢谢帮助,...
f(x)=cos(2X-π/3)+sin(x-π/4)sin(x+π/4)的最小正周期和图像的对称轴方程是什么?在【-π/12,π/2】的值域是多少?
越快越好,谢谢帮助,10分吧~ 展开
越快越好,谢谢帮助,10分吧~ 展开
2个回答
展开全部
首先将f(x)化简
f(x)=cos(2X-π/3)+sin(x-π/4)sin(x+π/4)
=cos(2X-π/3)+1/2*(-cos(2x)+cos(-π/2))
=cos(2X-π/3)+1/2*(-cos(2x)+cos(-π/2))
=cos(2X-π/3)-1/2*cos(2x)
=cos(2X)cos(-π/3)-sin(2x)sin(-π/3)-1/2*cos(2x)
=1/2*cos(2X)+sin(2x)sin(π/3)-1/2*cos(2x)
=sin(2x)sin(π/3)
化简后可以看出sin(π/3)是常数,只要求出sin(2x)的值域即可。
可知当x∈【-π/12,π/2】时,2x∈【-π/6,π】
通过正弦函数曲线可知sin2x的最小值是-1/2,最大值是1
故f(x)的最小值是-1/2sin(π/3),最大值是sin(π/3)
f(x)=cos(2X-π/3)+sin(x-π/4)sin(x+π/4)
=cos(2X-π/3)+1/2*(-cos(2x)+cos(-π/2))
=cos(2X-π/3)+1/2*(-cos(2x)+cos(-π/2))
=cos(2X-π/3)-1/2*cos(2x)
=cos(2X)cos(-π/3)-sin(2x)sin(-π/3)-1/2*cos(2x)
=1/2*cos(2X)+sin(2x)sin(π/3)-1/2*cos(2x)
=sin(2x)sin(π/3)
化简后可以看出sin(π/3)是常数,只要求出sin(2x)的值域即可。
可知当x∈【-π/12,π/2】时,2x∈【-π/6,π】
通过正弦函数曲线可知sin2x的最小值是-1/2,最大值是1
故f(x)的最小值是-1/2sin(π/3),最大值是sin(π/3)
展开全部
f(x)=cos(2x-π/3)+sin(x-π/4)sin(x+π/4)
=cos(2x)/2+sin(2x)sqrt(3)/2+[sin(x)-cos(x)]sqrt(2)/2*[sin(x)+cos(x)]sqrt(2)/2
=cos(2x)/2+sin(2x)sqrt(3)/2+[sin(x)]^2-[cos(x)]^2
=cos(2x)/2+sin(2x)sqrt(3)/2-cos(2x)
=sin(2x)sqrt(3)/2-cos(2x)/2
=sin(2x+2π/3),
故f(x)的最小正周期为2π/2=π,
图像的对称轴方程2x+2π/3=2kπ ==> x=kπ-π/3, k为整数.
在【-π/12,π/2】上,t=2x+2π/3属于【π/2,5π/3】, sin(t)单调减,
故f(x)属于【-sqrt(3)/2,1】。
=cos(2x)/2+sin(2x)sqrt(3)/2+[sin(x)-cos(x)]sqrt(2)/2*[sin(x)+cos(x)]sqrt(2)/2
=cos(2x)/2+sin(2x)sqrt(3)/2+[sin(x)]^2-[cos(x)]^2
=cos(2x)/2+sin(2x)sqrt(3)/2-cos(2x)
=sin(2x)sqrt(3)/2-cos(2x)/2
=sin(2x+2π/3),
故f(x)的最小正周期为2π/2=π,
图像的对称轴方程2x+2π/3=2kπ ==> x=kπ-π/3, k为整数.
在【-π/12,π/2】上,t=2x+2π/3属于【π/2,5π/3】, sin(t)单调减,
故f(x)属于【-sqrt(3)/2,1】。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询