设n为任意整数,试正:n(n+1)(2n+1)一定是6的倍数

 我来答
机器1718
2022-07-08 · TA获得超过6843个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:162万
展开全部
n和n+1有一个是偶数
所以n(n+1)(2n+1)能被2整除
若n能被3整除,则n(n+1)(2n+1)能被3整除
若n除3余数是2,则n+1除3余数是3,即能整除
若n除3余数是1,3k+1,则2n+1=6k+2+1=6k+3能被3整除
所以能被3整除
2和3互质,所以能被3整除能被2*3=6整除
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式