什么是函数符号傅里叶变换?
展开全部
符号函数不是绝对可积的函数,不存在常义下的傅里叶变换。在考虑广义函数的条件下是可求的,但不能用定义式F(jw)=∫f(t)e^{-jwt}dt来求,可以这样求:
首先已知F{δ(t)}=1,且2δ(t)=d(sgn(t))/dt。根据频域微分定理F{f'(t)}=jwF{f(t)},有F{2δ(t)}=jwF{sgn(t)},得到F{sgn(t)}=2/(jw)
函数的近代定义
是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询