二项式定理怎么证明?

 我来答
缮兮古陶瓷修复
高粉答主

2023-01-03 · 说的都是干货,快来关注
知道答主
回答量:119
采纳率:100%
帮助的人:1.8万
展开全部

二项式公式为:(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)b+...+C(n,i)a^(n-i)b^i+...+C(n,n)b^n.

二项式定理,又称牛顿二项式定理,由艾萨克·牛顿于1664-1665年提出。

公式为:(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)b+...+C(n,i)a^(n-i)b^i+...+C(n,n)b^n

式中,C(n,i)表示从n个元素中任取i个的组合数=n!/(n-i)!i!

扩展资料:

此定理指出:

1、(a+b)^n的二项展开式共有n+1项,其中各项的系数Cnr(r∈{0,1,2,……,n})叫做二项式系数。等号右边的多项式叫做二项展开式。

2、二项展开式的通项公式(简称通项)为C(n,r)(a)^(n-r)b^r,用Tr+1表示(其中"r+1"为角标),即通项为展开式的第r+1项(如下图),即n取i的组合数目。




推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式